|   | 
Details
   web
Records
Author Boyce, P.R.
Title The benefits of light at night Type Journal Article
Year 2019 Publication Building and Environment Abbreviated Journal Building and Environment
Volume 151 Issue Pages 356-367
Keywords Lighting; Society; Conservation
Abstract The use of light at night continues to increase. Simply put, this is because without light we are deprived of our premier sense, vision. By enabling vision the use of light at night delivers a number of benefits to people. Such benefits include greater safety for pedestrians and drivers, reduced fear of crime, more use of outdoor facilities after dark, enhanced economic growth and the creation of built and natural environments that are a source of beauty and entertainment. This suggests that the use of light at night is linked to some very basic human motivations which in turn means that people value such benefits and will not willingly abandon them. Fortunately, careful lighting design, soundly-based outdoor lighting standards and new lighting and sensor technology offer the possibility of providing the benefits of light at night while minimizing the impact on the environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-1323 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2171
Permanent link to this record
 

 
Author Zhang, P.; Pan, J.; Xie, L.; Zhou, T.; Bai, H.; Zhu, Y.
Title Spatial–Temporal Evolution and Regional Differentiation Features of Urbanization in China from 2003 to 2013 Type Journal Article
Year 2019 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi
Volume 8 Issue 1 Pages 31
Keywords Remote Sensing
Abstract Quantifying the temporal and spatial patterns of impervious surfaces (IS) is important for assessing the environmental and ecological impacts of urbanization. In order to better extract IS, and to explore the divergence in urbanization in different regions, research on the regional differentiation features and regional change difference features of IS are required. To extract China’s 2013 urban impervious area, we used the 2013 night light (NTL) data and the Moderate Resolution Imaging Spectroradiometer Normalized Difference Vegetation Index and enhanced vegetation index (EVI) temporal series data, and used three urban impervious surface extraction indexes—Human Settlements Index, Vegetation-Adjusted NTL Urban Index, and the EVI-adjusted NTL index (EANTLI)—which are recognized as the best and most widely used indexes for extracting urban impervious areas. We used the classification results of the Landsat-8 images as the benchmark data to visually compare and verify the results of the urban impervious area extracted by the three indexes. We determined that the EANTLI index better reflects the distribution of the impervious area. Therefore, we used the EANTLI index to extract the urban impervious area from 2003 to 2013 in the study area, and researched the spatial and temporal differentiation in urban IS. The results showed that China’s urban IS area was 70,179.06 km2, accounting for 0.73% of the country’s land area in 2013, compared with 20,565.24 km2 in 2003, which accounted for 0.21% of the land area, representing an increase of 0.52%. On a spatial scale, like economic development, the distribution of urban impervious surfaces was different in different regions. The overall performance of the urban IS percentage was characterized by a decreasing trend from Northwest China, Southwest China, the Middle Reaches of the Yellow River, Northeast China, the Middle Reaches of the Yangtze River, Southern Coastal China, and Northern Coastal China to Eastern Coastal China. On the provincial scale, the urban IS expansion showed considerable differences in different regions. The overall performance of the Urban IS Expansion index showed that the eastern coastal areas had higher values than the western inland areas. The cities or provinces of Beijing, Tianjin, Jiangsu, and Shanghai had the largest growth in impervious areas. Spatially and temporally quantifying the change in urban impervious areas can help to better understand the intensity of urbanization in a region. Therefore, quantifying the change in urban impervious area has an important role in the study of regional environmental and economic development, policy formulation, and the rational use of resources in both time and space.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2220-9964 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2172
Permanent link to this record
 

 
Author Macgregor, C.J.; Pocock, M.J.O.; Fox, R.; Evans, D.M.
Title Effects of street lighting technologies on the success and quality of pollination in a nocturnally pollinated plant Type Journal Article
Year 2019 Publication Ecosphere Abbreviated Journal Ecosphere
Volume 10 Issue 1 Pages e02550
Keywords Ecology; Animals; Plants
Abstract Artificial light at night (ALAN) is an increasingly important driver of global change. Lighting directly affects plants, but few studies have investigated indirect effects mediated by interacting organisms. Nocturnal Lepidoptera are globally important pollinators, and pollen transport by moths is disrupted by lighting. Many street lighting systems are being replaced with novel, energy‐efficient lighting, with unknown ecological consequences. Using the wildflower Silene latifolia, we compared pollination success and quality at experimentally lit and unlit plots, testing two major changes to street lighting technology: in lamp type, from high‐pressure sodium lamps to light‐emitting diodes, and in lighting regime, from full‐night (FN) to part‐night (PN) lighting. We predicted that lighting would reduce pollination. S. latifolia was pollinated both diurnally and nocturnally. Contrary to our predictions, flowers under FN lighting had higher pollination success than flowers under either PN lighting or unlit controls, which did not significantly differ from each other. Lamp type, lighting regime, and distance from the light all significantly affected aspects of pollination quality. These results confirm that street lighting could affect plant reproduction through indirect effects mediated by nocturnal insects, and further highlight the possibility for novel lighting technologies to mitigate the effects of ALAN on ecosystems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2150-8925 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2174
Permanent link to this record
 

 
Author Doumbia, E.H.T.; Liousse, C.; Keita, S.; Granier, L.; Granier, C.; Elvidge, C.D.; Elguindi, N.; Law, K.
Title Flaring emissions in Africa: Distribution, evolution and comparison with current inventories Type Journal Article
Year 2019 Publication Atmospheric Environment Abbreviated Journal Atmospheric Environment
Volume 199 Issue Pages 423-434
Keywords Remote Sensing
Abstract Flaring emissions are a major concern due to large uncertainties in the amount of chemical compounds released into the atmosphere and their evolution with time. A methodology based on DMSP (Defense Meteorological Satellite Program) nighttime light data combined with regional gas flaring volumes from National Oceanic and Atmospheric Administration's National Centers for Environmental Information (NOAA-NCEI) has been developed to estimate flaring emissions. This method is validated in Nigeria where individual field company data are available. The spatial distribution of CO2, CH4, NMVOCs, CO, OC, BC, SO2 and NOx is derived for the African continent for the period 1995–2010.

A range of the emissions due to flaring is estimated based on the range of emission factors (EFs) for each chemical species. An average decrease in CO2 emissions of about 30% is found over Africa from 1995 to 2010, with Nigeria being the largest contributor to this reduction (up to 50%). Changes in the spatial distribution with time indicate local increases, particularly at offshore platforms, which are attributed to a lack of regulations as well as aging infrastructures in oil and gas fields.

Comparisons with current inventories reveal differences in the location and magnitude of point source emissions. For chemical compounds such as NMVOCs and CH4, the ECLIPSE and EDGAR country-level values are considerably higher than the highest flaring emission estimated in this study for 2005. For species such as CO, OC, BC, SO2 and NOx, the emissions provided by the ECLIPSE and EDGAR inventories are generally within the same order of magnitude as the average values found in this study, with the exception of OC, BC and SO2 in which EDGAR provides much lower emissions. These discrepancies are likely due to either differences in the methodologies used to estimate the emissions, in the values of the emission factors considered, or in the definition of flaring sector. Our current estimations suggest that BC, CH4 and CO2 flaring emissions in Africa account for 1–15% (on average 7%), 0.5–8% (on average 2%) and 8–13% (on average 11%) of African total anthropogenic emissions, respectively. The contribution of flaring to African anthropogenic emissions varies widely among countries. For example, in Nigeria the average emissions due to flaring are estimated to be as high as 18% for BC, 10% for CH4 and 50% for CO2, which is significantly greater than the continental average and highlights the importance of emissions in flaring areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1352-2310 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2176
Permanent link to this record
 

 
Author Stathakis, D.; Baltas, P.
Title Seasonal population estimates based on night-time lights Type Journal Article
Year 2018 Publication Computers, Environment and Urban Systems Abbreviated Journal Computers, Environment and Urban Systems
Volume 68 Issue Pages 133-141
Keywords Remote Sensing
Abstract The objective of this paper is to present a method for estimating seasonally specific ambient population counts. The central assumption is that the variation in observed night-lights is a valid proxy for ambient population. Island populations are used for validation, where it is possible to derive estimates of ambient population from national statistics. The method is then applied to the whole of Greece. The validation shows a strong correlation amongst night-lights derived estimates and the reference dataset. Based on the proposed method, national maps are produced showing the month when seasonality is in its peak, the peak value during that month and the overall length of the season, in terms of how many months exceed a certain threshold. Different seasonality patterns are revealed. An advantage of the proposed method, compared to other contemporary approaches, is that it is based on public domain, global data.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language (up) Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0198-9715 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2177
Permanent link to this record