|   | 
Details
   web
Records
Author Wren, W.; Locke, S.
Title Upgraded Rig Lighting Improves Night Time Visibility While Reducing Stray Light and the Threat to Dark Skies in West Texas Type Conference Article
Year 2015 Publication Society of Petroleum Engineers Abbreviated Journal Soc. Petrol. Engr.
Volume Issue Pages
Keywords Lighting; outdoor lighting; petroleum; oil and gas; lighting engineering
Abstract McDonald Observatory, part of the University of Texas at Austin, is a world-class astronomical-research facility representing hundreds of millions of dollars of public and private investment that is increasingly threatened by nighttime lighting from oil-and-gas-related activities in and around the Permian Basin. Established in the remote Davis Mountains of West Texas in 1932, the observatory is home to some of the world's largest telescopes and it has continued as a world-renowned research center. Dark night skies are crucial to its mission. Since 2010, however, the sky along the observatory's northern horizon, in the direction of the Permian Basin, has been steadily and rapidly brightening, due to new exploration for oil and gas. The pace has been accelerating: More than 2,000 applications were filed over the past year to drill in the region. In 2011, the State of Texas enacted a law that instructs the seven counties surrounding McDonald Observatory, an area covering some 28,000 square miles, to adopt outdoor lighting ordinances designed to preserve the dark night skies for ongoing astronomical research at the observatory. Most had already done so voluntarily, but additional effort is needed throughout the area to address fast-moving energy-exploration activities.

A joint project between McDonald Observatory and Pioneer Energy Services (PES) has demonstrated that many of the adverse effects of oilfield lighting can be mitigated, without jeopardizing safety, through proper shielding and aiming of light fixtures. Beginning July, 2013, PES granted the observatory access to a working rig, Pioneer Rig #29. Every time the rig moved to a new location, there was an opportunity to install shields, re-aim floodlights, and evaluate effectiveness.

This joint project demonstrated that, in many cases, nighttime visibility on the rig can be significantly improved. Many light fixtures, which had been sources of blinding glare due to of lack of shielding, poor placement, or poor aiming, were made better and safer, using optional glare shields that are offered by manufacturers for a variety of fixture models. Proper shielding and aiming of existing fixtures improves visibility and reduces wasted uplight. New lighting systems that take advantage of light-emitting-diode technology also promise better directionality, reduced fuel consumption, and darker skies overhead.

The oil-and-gas industry has been lighting its exploration and production activities in much same way for more than 100 years, with little to no consideration of environmental impacts. The opportunity exists to adopt new lighting practices and technologies that improve safety, reduce costs, and help preserve our vanishing night skies so that important ongoing scientific exploration can continue.
Address
Corporate Author Thesis
Publisher Society of Petroleum Engineers Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes (down) SPE E&P Health, Safety, Security and Environmental Conference-Americas held in Denver, Colorado, USA, 16–18 March 2015 Approved no
Call Number IDA @ john @ Serial 1993
Permanent link to this record
 

 
Author Franklin, M.; Yin, X.; McConnell, R.; Fruin, S.
Title Association of the Built Environment With Childhood Psychosocial Stress Type Journal Article
Year 2020 Publication JAMA Network Open Abbreviated Journal JAMA Netw Open
Volume 3 Issue 10 Pages e2017634
Keywords Human Health; Remote Sensing
Abstract Importance: Emerging research suggests that factors associated with the built environment, including artificial light, air pollution, and noise, may adversely affect children's mental health, while living near green space may reduce stress. Little is known about the combined roles of these factors on children's stress. Objective: To investigate associations between components of the built environment with personal and home characteristics in a large cohort of children who were assessed for perceived stress. Design, Setting, and Participants: In this cohort study, a total of 2290 Southern California Children's Health Study participants residing in 8 densely populated urban communities responded to detailed questionnaires. Exposures of artificial light at night (ALAN) derived from satellite observations, near-roadway air pollution (NRP) determined from a dispersion model, noise estimated from the US Traffic Noise Model, and green space from satellite observations of the enhanced vegetation index were linked to each participant's geocoded residence. Main Outcomes and Measures: Children's stress was assessed at ages 13 to 14 years and 15 to 16 years using the 4-item Perceived Stress Scale (PSS-4), scaled from 0 to 16, with higher scores indicating greater perceived stress. Measurements were conducted in 2010 and 2012, and data were analyzed from February 6 to August 24, 2019. Multivariate mixed-effects models were used to examine multiple exposures; modification and mediation analyses were also conducted. Results: Among the 2290 children in this study, 1149 were girls (50%); mean (SD) age was 13.5 (0.6) years. Girls had significantly higher perceived stress measured by PSS-4 (mean [SD] score, 5.7 [3.4]) than boys (4.9 [3.2]). With increasing age (from 13.5 [0.6] to 15.3 [0.6] years), the mean PSS-4 score rose from 5.6 (3.3) to 6.0 (3.4) in girls but decreased for boys from 5.0 (3.2) to 4.7 (3.1). Multivariate mixed-effects models examining multiple exposures indicated that exposure to secondhand smoke in the home was associated with a 0.85 (95% CI, 0.46-1.24) increase in the PSS-4 score. Of the factors related to the physical environment, an interquartile range (IQR) increase in ALAN was associated with a 0.57 (95% CI, 0.05-1.09) unit increase in the PSS-4 score together with a 0.16 score increase per IQR increase of near-roadway air pollution (95% CI, 0.02-0.30) and a -0.24 score decrease per IQR increase of the enhanced vegetation index (95% CI, -0.45 to -0.04). Income modified the ALAN effect size estimate; participants in households earning less than $48000 per year had significantly greater stress per IQR increase in ALAN. Sleep duration partially mediated the associations between stress and both enhanced vegetation index (17%) and ALAN (18%). Conclusions and Relevance: In this cohort study, children's exposure to smoke at home in addition to residential exposure to ALAN and near-roadway air pollution were associated with increased perceived stress among young adolescent children. These associations appeared to be partially mitigated by more residential green space. The findings may support the promotion of increased residential green spaces to reduce pollution associated with the built environment, with possible mental health benefits for children.
Address Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2574-3805 ISBN Medium
Area Expedition Conference
Notes (down) PMID:33084897 Approved no
Call Number GFZ @ kyba @ Serial 3182
Permanent link to this record
 

 
Author Parkinson, E.; Lawson, J.; Tiegs, S.D.
Title Artificial light at night at the terrestrial-aquatic interface: Effects on predators and fluxes of insect prey Type Journal Article
Year 2020 Publication PloS one Abbreviated Journal PLoS One
Volume 15 Issue 10 Pages e0240138
Keywords Ecology
Abstract The outcomes of species interactions-such as those between predators and prey-increasingly depend on environmental conditions that are modified by human activities. Light is among the most fundamental environmental parameters, and humans have dramatically altered natural light regimes across much of the globe through the addition of artificial light at night (ALAN). The consequences for species interactions, communities and ecosystems are just beginning to be understood. Here we present findings from a replicated field experiment that simulated over-the-water lighting in the littoral zone of a small lake. We evaluated responses by emergent aquatic insects and terrestrial invertebrate communities, and riparian predators (tetragnathid spiders). On average ALAN plots had 51% more spiders than control plots that were not illuminated. Mean individual spider body mass was greater in ALAN plots relative to controls, an effect that was strongly sex-dependent; mean male body mass was 34% greater in ALAN plots while female body mass was 176% greater. The average number of prey items captured in spider webs was 139% greater on ALAN mesocosms, an effect attributed to emergent aquatic insects. Non-metric multidimensional scaling and a multiple response permutation procedure revealed significantly different invertebrate communities captured in pan traps positioned in ALAN plots and controls. Control plots had taxonomic-diversity values (as H') that were 58% greater than ALAN plots, and communities that were 83% more-even. We attribute these differences to the aquatic family Caenidae which was the dominant family across both light treatments, but was 818% more abundant in ALAN plots. Our findings show that when ALAN is located in close proximity to freshwater it can concentrate fluxes of emergent aquatic insects, and that terrestrial predators in the littoral zone can compound this effect and intercept resource flows, preventing them from entering the terrestrial realm.
Address Department of Biological Sciences, Oakland University, Rochester, Michigan, United States of America
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes (down) PMID:33031444 Approved no
Call Number GFZ @ kyba @ Serial 3173
Permanent link to this record
 

 
Author Khan, Z.A.; Yumnamcha, T.; Mondal, G.; Devi, S.D.; Rajiv, C.; Labala, R.K.; Sanjita Devi, H.; Chattoraj, A.
Title Artificial Light at Night (ALAN): A Potential Anthropogenic Component for the COVID-19 and HCoVs Outbreak Type Journal Article
Year 2020 Publication Frontiers in Endocrinology Abbreviated Journal Front Endocrinol (Lausanne)
Volume 11 Issue Pages 622
Keywords Animals; Human Health; Review; ALAN; Covid-19; HCoVs; bat; melatonin; sustainability
Abstract The origin of the coronavirus disease 2019 (COVID-19) pandemic is zoonotic. The circadian day-night is the rhythmic clue to organisms for their synchronized body functions. The “development for mankind” escalated the use of artificial light at night (ALAN). In this article, we tried to focus on the possible influence of this anthropogenic factor in human coronavirus (HCoV) outbreak. The relationship between the occurrences of coronavirus and the ascending curve of the night-light has also been delivered. The ALAN influences the physiology and behavior of bat, a known nocturnal natural reservoir of many Coronaviridae. The “threatened” and “endangered” status of the majority of bat species is mainly because of the destruction of their proper habit and habitat predominantly through artificial illumination. The stress exerted by ALAN leads to the impaired body functions, especially endocrine, immune, genomic integration, and overall rhythm features of different physiological variables and behaviors in nocturnal animals. Night-light disturbs “virus-host” synchronization and may lead to mutation in the genomic part of the virus and excessive virus shedding. We also proposed some future strategies to mitigate the repercussions of ALAN and for the protection of the living system in the earth as well.
Address Biological Rhythm Laboratory, Department of Animal Science, Kazi Nazrul University, Asansol, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1664-2392 ISBN Medium
Area Expedition Conference
Notes (down) PMID:33013700; PMCID:PMC7511708 Approved no
Call Number GFZ @ kyba @ Serial 3169
Permanent link to this record
 

 
Author Xie, Z.; Han, Y.; Sun, L.; Ping, J.
Title Analysis of land cover evolution within the built-up areas of provincial capital cities in northeastern China based on nighttime light data and Landsat data Type Journal Article
Year 2020 Publication PloS one Abbreviated Journal PLoS One
Volume 15 Issue 10 Pages e0239371
Keywords Remote Sensing
Abstract Mastering the evolution of urban land cover is important for urban management and planning. In this paper, a method for analyzing land cover evolution within urban built-up areas based on nighttime light data and Landsat data is proposed. The method solves the problem of inaccurate descriptions of urban built-up area boundaries from the use of single-source diurnal or nocturnal remote sensing data and was able to achieve an effective analysis of land cover evolution within built-up areas. Four main procedures are involved: (1) The neighborhood extremum method and maximum likelihood method are used to extract nighttime light data and the urban built-up area boundaries from the Landsat data, respectively; (2) multisource urban boundaries are obtained using boundary pixel fusion of the nighttime light data and Landsat urban built-up area boundaries; (3) the maximum likelihood method is used to classify Landsat data within multisource urban boundaries into land cover classes, such as impervious surface, vegetation and water, and to calculate landscape indexes, such as overall landscape trends, degree of fragmentation and degree of aggregation; (4) the changes in the multisource urban boundaries and landscape indexes were obtained using the abovementioned methods, which were supported by multitemporal nighttime light data and Landsat data, to model the urban land cover evolution. Using the cities of Shenyang, Changchun and Harbin in northeastern China as experimental areas, the multitemporal landscape index showed that the integration and aggregation of land cover in the urban areas had an increasing trend, the natural environment of Shenyang and Harbin was improving, while Changchun laid more emphasis on the construction of artificial facilities. At the same time, the method proposed in this paper to extract built-up areas from multi-source city data showed that the user accuracy, production accuracy, overall accuracy and Kappa coefficient are at least 3%, 1%, 1% and 0.04 higher than the single-source data method.
Address School of Transportation Engineering, Shenyang Jianzhu University, Hunnan District, Shenyang, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes (down) PMID:33001996; PMCID:PMC7529268 Approved no
Call Number GFZ @ kyba @ Serial 3166
Permanent link to this record