|   | 
Details
   web
Records
Author Phillips, A.J.K.; Vidafar, P.; Burns, A.C.; McGlashan, E.M.; Anderson, C.; Rajaratnam, S.M.W.; Lockley, S.W.; Cain, S.W.
Title High sensitivity and interindividual variability in the response of the human circadian system to evening light Type Journal Article
Year 2019 Publication Proceedings of the National Academy of Sciences of the United States of America Abbreviated Journal Proc Natl Acad Sci U S A
Volume 116 Issue 24 Pages 12019-12024
Keywords Human Health; circadian rhythms; light sensitivity; circadian disruption; melatonin suppression; evening light
Abstract Before the invention of electric lighting, humans were primarily exposed to intense (>300 lux) or dim (<30 lux) environmental light-stimuli at extreme ends of the circadian system's dose-response curve to light. Today, humans spend hours per day exposed to intermediate light intensities (30-300 lux), particularly in the evening. Interindividual differences in sensitivity to evening light in this intensity range could therefore represent a source of vulnerability to circadian disruption by modern lighting. We characterized individual-level dose-response curves to light-induced melatonin suppression using a within-subjects protocol. Fifty-five participants (aged 18-30) were exposed to a dim control (<1 lux) and a range of experimental light levels (10-2,000 lux for 5 h) in the evening. Melatonin suppression was determined for each light level, and the effective dose for 50% suppression (ED50) was computed at individual and group levels. The group-level fitted ED50 was 24.60 lux, indicating that the circadian system is highly sensitive to evening light at typical indoor levels. Light intensities of 10, 30, and 50 lux resulted in later apparent melatonin onsets by 22, 77, and 109 min, respectively. Individual-level ED50 values ranged by over an order of magnitude (6 lux in the most sensitive individual, 350 lux in the least sensitive individual), with a 26% coefficient of variation. These findings demonstrate that the same evening-light environment is registered by the circadian system very differently between individuals. This interindividual variability may be an important factor for determining the circadian clock's role in human health and disease.
Address Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia sean.cain@monash.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0027-8424 ISBN Medium
Area Expedition Conference
Notes (down) PMID:31138694 Approved no
Call Number IDA @ intern @ Serial 2521
Permanent link to this record
 

 
Author Bullock, B.; McGlashan, E.M.; Burns, A.C.; Lu, B.S.; Cain, S.W.
Title Traits related to bipolar disorder are associated with an increased post-illumination pupil response Type Journal Article
Year 2019 Publication Psychiatry Research Abbreviated Journal Psychiatry Res
Volume 278 Issue Pages 35-41
Keywords Human Health
Abstract Mood states in bipolar disorder appear to be closely linked to changes in sleep and circadian function. It has been suggested that hypersensitivity of the circadian system to light may be a trait vulnerability for bipolar disorder. Healthy persons with emotional-behavioural traits associated with bipolar disorder also appear to exhibit problems with circadian rhythms, which may be associated with individual differences in light sensitivity. This study investigated the melanopsin-driven post-illumination pupil response (PIPR) in relation to emotional-behavioural traits associated with bipolar disorder (measured with the General Behavior Inventory) in a non-clinical group (n=61). An increased PIPR was associated with increased bipolar disorder-related traits. Specifically, the hypomania scale of the General Behavior Inventory was associated with an increased post-blue PIPR. Further, both the full hypomania and shortened '7 Up' scales were significantly predicted by PIPR, after age, sex and depressive traits were controlled. These findings suggest that increased sensitivity to light may be a risk factor for mood problems in the general population, and support the idea that hypersensitivity to light is a trait vulnerability for, rather than symptom of, bipolar disorder.
Address School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia. Electronic address: sean.cain@monash.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-1781 ISBN Medium
Area Expedition Conference
Notes (down) PMID:31136914 Approved no
Call Number GFZ @ kyba @ Serial 2510
Permanent link to this record
 

 
Author Lin, J.; Ding, X.; Hong, C.; Pang, Y.; Chen, L.; Liu, Q.; Zhang, X.; Xin, H.; Wang, X.
Title Several biological benefits of the low color temperature light-emitting diodes based normal indoor lighting source Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 9 Issue 1 Pages 7560
Keywords Human Health; Lighting
Abstract Currently, light pollution has become a nonnegligible issue in our daily life. Artificial light sources with high color temperature were deem to be the major pollution source, which could induce several adverse effects on human's health. In our previous research, we have firstly developed an artificial indoor light with low color temperature (1900 K). However, the biological effects of this artificial light on human's health are unclear. Here, four artificial lights (1900 K, 3000 K, 4000 K and 6600 K) were used to evaluate some biological changes in both human (in total 152 person-times) and murine models. Compared with other three high color temperature artificial lights, our lights (1900 K) presented a positive effect on promoting the secreting of melatonin and glutamate, protecting human's eyes, accelerating would healing and hair regeneration. These systematical studies indicated that the proposed low color temperature (1900 K) light could provide several significant benefits in human's daily life.
Address The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330031, China. wangxiaolei@ncu.edu.cn
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes (down) PMID:31101840 Approved no
Call Number GFZ @ kyba @ Serial 2501
Permanent link to this record
 

 
Author Korompeli, A.; Kavrochorianou, N.; Molcan, L.; Muurlink, O.; Boutzouka, E.; Myrianthefs, P.; Fildissis, G.
Title Light affects heart rate's 24-h rhythmicity in intensive care unit patients: an observational study Type Journal Article
Year 2019 Publication Nursing in Critical Care Abbreviated Journal Nurs Crit Care
Volume 24 Issue 5 Pages 320-325
Keywords Lighting; Human Health; Heart Rate; ICU; Circadian Rhythm
Abstract BACKGROUND: Intensive care unit (ICU) patients experience two affronts to normal 24-h rhythms: largely internal events such as medication and external factors such as light, noise and nursing interventions. AIMS AND OBJECTIVES: We investigated the impact of light variance within an ICU on 24-h rhythmicity of three key physiological parameters: heart rate (HR), mean arterial blood pressure (MAP) and body temperature (BT) in this patient population. DESIGN: Patients were assigned to beds either in the 'light' or 'dark' side within a single ICU. An actigraph continuously recorded light intensity for a 24-72-h period. METHODS: Measurements of HR, MAP and BT were recorded every 30 min. RESULTS: HR, MAP and BT did not follow 24-h rhythmicity in all patients. Higher light exposure in the Light Side of the ICU (122.3 versus 50.6 lx) was related to higher HR (89.4 versus 79.8 bpm), which may translate to clinically relevant outcomes in a larger sample. Duration of stay, the one clinical outcome measured in this study, showed no significant variation between the groups (p = 0.147). CONCLUSIONS: ICU patients are exposed to varying light intensities depending on bed positioning relative to natural sunlight, affecting the 24-h rhythm of HR. Larger, well-controlled studies also investigating the effect of relevant light intensity are indicated. RELEVANCE TO CLINICAL PRACTICE: Light is a variable that can be manipulated in the constrained environment of an ICU, thus offering an avenue for relatively unobtrusive interventions.
Address National and Kapodistrian University of Athens, University ICU, Ag. Anargyroi General Hospital, Athens, Greece
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1362-1017 ISBN Medium
Area Expedition Conference
Notes (down) PMID:31087602 Approved no
Call Number GFZ @ kyba @ Serial 2502
Permanent link to this record
 

 
Author Xiang, S.; Dauchy, R.T.; Hoffman, A.E.; Pointer, D.; Frasch, T.; Blask, D.E.; Hill, S.M.
Title Epigenetic inhibition of the tumor suppressor ARHI by light at night-induced circadian melatonin disruption mediates STAT3-driven paclitaxel resistance in breast cancer Type Journal Article
Year 2019 Publication Journal of Pineal Research Abbreviated Journal J Pineal Res
Volume 67 Issue 2 Pages e12586
Keywords Animals; Human Health; Circadian Rhythm; Cancer; tumor suppression
Abstract Disruption of circadian time structure and suppression of circadian nocturnal melatonin (MLT) production by exposure to dim light at night (dLAN), as occurs with night shift work and/or disturbed sleep-wake cycles, is associated with a significantly increased risk of breast cancer and resistance to tamoxifen and doxorubicin. Melatonin inhibition of human breast cancer chemo-resistance involves mechanisms including suppression of tumor metabolism and inhibition of kinases and transcription factors which are often activated in drug-resistant breast cancer. Signal Transducer and Activator of Transcription 3 (STAT3), frequently overexpressed and activated in Paclitaxel (PTX)-resistant breast cancer, promotes the expression of DNA methyltransferase one (DNMT1) to epigenetically suppresses the transcription of tumor suppressor Aplasia Ras homolog one (ARHI) which can sequester STAT3 in the cytoplasm to block PTX-resistance. We demonstrate that breast tumor xenografts in rats exposed to dLAN and circadian MLT disrupted express elevated levels of phosphorylated and acetylated STAT3, increased DNMT1, but reduced Sirtuin 1 (SIRT1) and ARHI. Furthermore, MLT and/or SIRT1 administration blocked/reversed Interleukin 6 (IL-6)-induced acetylation of STAT3 and its methylation of ARH1 to increase ARH1 mRNA expression in MCF-7 breast cancer cells. Finally, analyses of the I-SPY 1 trial demonstrates that elevated MT1 receptor expression is significantly correlated with pathologic complete response following neo-adjuvant therapy in breast cancer patients. This is the first study to demonstrate circadian disruption of MLT by dLAN driving intrinsic resistance to PTX via epigenetic mechanisms increasing STAT3 expression and that MLT administration can reestablish sensitivity of breast tumors to PTX and drive tumor regression.
Address Tulane Circadian Cancer Biology Group, New Orleans, Louisiana
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-3098 ISBN Medium
Area Expedition Conference
Notes (down) PMID:31077613 Approved no
Call Number GFZ @ kyba @ Serial 2383
Permanent link to this record