toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kronauer, R.E.; St Hilaire, M.A.; Rahman, S.A.; Czeisler, C.A.; Klerman, E.B. url  doi
openurl 
  Title An Exploration of the Temporal Dynamics of Circadian Resetting Responses to Short- and Long-Duration Light Exposures: Cross-Species Consistencies and Differences Type Journal Article
  Year 2019 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms  
  Volume 34 Issue 5 Pages 497-514  
  Keywords Animals; Human Health  
  Abstract Light is the most effective environmental stimulus for shifting the mammalian circadian pacemaker. Numerous studies have been conducted across multiple species to delineate wavelength, intensity, duration, and timing contributions to the response of the circadian pacemaker to light. Recent studies have revealed a surprising sensitivity of the human circadian pacemaker to short pulses of light. Such responses have challenged photon counting-based theories of the temporal dynamics of the mammalian circadian system to both short- and long-duration light stimuli. Here, we collate published light exposure data from multiple species, including gerbil, hamster, mouse, and human, to investigate these temporal dynamics and explore how the circadian system integrates light information at both short- and long-duration time scales to produce phase shifts. Based on our investigation of these data sets, we propose 3 new interpretations: (1) intensity and duration are independent factors of total phase shift magnitude, (2) the possibility of a linear/log temporal function of light duration that is universal for all intensities for durations less than approximately 12 min, and (3) a potential universal minimum light duration of ~0.7 sec that describes a “dead zone” of light stimulus. We show that these properties appear to be consistent across mammalian species. These interpretations, if confirmed by further experiments, have important practical implications in terms of understanding the underlying physiology and for the design of lighting regimens to reset the mammalian circadian pacemaker.  
  Address Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts  
  Corporate Author Thesis  
  Publisher Sage Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0748-7304 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:31368391 Approved no  
  Call Number GFZ @ kyba @ Serial 2600  
Permanent link to this record
 

 
Author Amichai, E.; Kronfeld-Schor, N. url  doi
openurl 
  Title Artificial Light at Night Promotes Activity Throughout the Night in Nesting Common Swifts (Apus apus) Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages 11052  
  Keywords Animals  
  Abstract The use of artificial light at night (ALAN) is a rapidly expanding anthropogenic effect that transforms nightscapes throughout the world, causing light pollution that affects ecosystems in a myriad of ways. One of these is changing or shifting activity rhythms, largely synchronized by light cues. We used acoustic loggers to record and quantify activity patterns during the night of a diurnal bird – the common swift – in a nesting colony exposed to extremely intensive artificial illumination throughout the night at Jerusalem's Western Wall. We compared that to activity patterns at three other colonies exposed to none, medium, or medium-high ALAN. We found that in the lower-intensity ALAN colonies swifts ceased activity around sunset, later the more intense the lighting. At the Western Wall, however, swifts remained active throughout the night. This may have important implications for the birds' physiology, breeding cycle, and fitness, and may have cascading effects on their ecosystems.  
  Address School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:31363144 Approved no  
  Call Number GFZ @ kyba @ Serial 2594  
Permanent link to this record
 

 
Author Spitschan, M.; Cajochen, C. url  doi
openurl 
  Title Binocular facilitation in light-mediated melatonin suppression? Type Journal Article
  Year 2019 Publication Journal of Pineal Research Abbreviated Journal J Pineal Res  
  Volume 67 Issue 4 Pages e12602  
  Keywords Human Health; Vision; melatonin suppression; monocular; binocular  
  Abstract Astronomers and pilots have known for a long time that closing one eye can preserve vision in that eye while going from dark to light and back. Recently, it was reported that viewing a smartphone monocularly in an otherwise dark room can lead to transient, but strong reductions in retinal sensitivity in that eye (Alim-Marvasti, Bi, Mahroo, Barbur, & Plant, 2016). But seeing detail is not the only function that is mediated by the retina. Here, we address the question whether light exposure to one eye only (monocular) has tangible effects on the suppression of melatonin by light, relative to both eyes open (binocular).  
  Address Transfaculty Research Platform Molecular and Cognitive Neurosciences, University of Basel, Basel, Switzerland  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0742-3098 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:31361918 Approved no  
  Call Number GFZ @ kyba @ Serial 2595  
Permanent link to this record
 

 
Author Stone, J.E.; Phillips, A.J.K.; Ftouni, S.; Magee, M.; Howard, M.; Lockley, S.W.; Sletten, T.L.; Anderson, C.; Rajaratnam, S.M.W.; Postnova, S. url  doi
openurl 
  Title Generalizability of A Neural Network Model for Circadian Phase Prediction in Real-World Conditions Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages 11001  
  Keywords Human Health; Instrumentation  
  Abstract A neural network model was previously developed to predict melatonin rhythms accurately from blue light and skin temperature recordings in individuals on a fixed sleep schedule. This study aimed to test the generalizability of the model to other sleep schedules, including rotating shift work. Ambulatory wrist blue light irradiance and skin temperature data were collected in 16 healthy individuals on fixed and habitual sleep schedules, and 28 rotating shift workers. Artificial neural network models were trained to predict the circadian rhythm of (i) salivary melatonin on a fixed sleep schedule; (ii) urinary aMT6s on both fixed and habitual sleep schedules, including shift workers on a diurnal schedule; and (iii) urinary aMT6s in rotating shift workers on a night shift schedule. To determine predicted circadian phase, center of gravity of the fitted bimodal skewed baseline cosine curve was used for melatonin, and acrophase of the cosine curve for aMT6s. On a fixed sleep schedule, the model predicted melatonin phase to within +/- 1 hour in 67% and +/- 1.5 hours in 100% of participants, with mean absolute error of 41 +/- 32 minutes. On diurnal schedules, including shift workers, the model predicted aMT6s acrophase to within +/- 1 hour in 66% and +/- 2 hours in 87% of participants, with mean absolute error of 63 +/- 67 minutes. On night shift schedules, the model predicted aMT6s acrophase to within +/- 1 hour in 42% and +/- 2 hours in 53% of participants, with mean absolute error of 143 +/- 155 minutes. Prediction accuracy was similar when using either 1 (wrist) or 11 skin temperature sensor inputs. These findings demonstrate that the model can predict circadian timing to within +/- 2 hours for the vast majority of individuals on diurnal schedules, using blue light and a single temperature sensor. However, this approach did not generalize to night shift conditions.  
  Address School of Physics, University of Sydney, Sydney, New South Wales, Australia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:31358781; PMCID:PMC6662750 Approved no  
  Call Number GFZ @ kyba @ Serial 2667  
Permanent link to this record
 

 
Author Kernbach, M.E.; Newhouse, D.J.; Miller, J.M.; Hall, R.J.; Gibbons, J.; Oberstaller, J.; Selechnik, D.; Jiang, R.H.Y.; Unnasch, T.R.; Balakrishnan, C.N.; Martin, L.B. url  doi
openurl 
  Title Light pollution increases West Nile virus competence of a ubiquitous passerine reservoir species Type Journal Article
  Year 2019 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci  
  Volume 286 Issue 1907 Pages 20191051  
  Keywords Animals; Human Health; anthropogenic; ecoimmunology; host competence; light pollution; reservoir host  
  Abstract Among the many anthropogenic changes that impact humans and wildlife, one of the most pervasive but least understood is light pollution. Although detrimental physiological and behavioural effects resulting from exposure to light at night are widely appreciated, the impacts of light pollution on infectious disease risk have not been studied. Here, we demonstrate that artificial light at night (ALAN) extends the infectious-to-vector period of the house sparrow (Passer domesticus), an urban-dwelling avian reservoir host of West Nile virus (WNV). Sparrows exposed to ALAN maintained transmissible viral titres for 2 days longer than controls but did not experience greater WNV-induced mortality during this window. Transcriptionally, ALAN altered the expression of gene regulatory networks including key hubs (OASL, PLBD1 and TRAP1) and effector genes known to affect WNV dissemination (SOCS). Despite mounting anti-viral immune responses earlier, transcriptomic signatures indicated that ALAN-exposed individuals probably experienced pathogen-induced damage and immunopathology, potentially due to evasion of immune effectors. A simple mathematical modelling exercise indicated that ALAN-induced increases of host infectious-to-vector period could increase WNV outbreak potential by approximately 41%. ALAN probably affects other host and vector traits relevant to transmission, and additional research is needed to advise the management of zoonotic diseases in light-polluted areas.  
  Address Center for Global Health Infectious Disease Research, University of South Florida, Tampa, FL 33620, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8452 ISBN Medium  
  Area Expedition Conference  
  Notes (down) PMID:31337318; PMCID:PMC6661335 Approved no  
  Call Number GFZ @ kyba @ Serial 2611  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: