toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Foster, R.G.; Hughes, S.; Peirson, S.N. url  doi
openurl 
  Title Circadian Photoentrainment in Mice and Humans Type Journal Article
  Year 2020 Publication (up) Biology Abbreviated Journal Biology (Basel)  
  Volume 9 Issue 7 Pages  
  Keywords Review; Animals; Human Health; circadian; entrainment; human; melanopsin (OPN4); mouse; photoreceptor  
  Abstract Light around twilight provides the primary entrainment signal for circadian rhythms. Here we review the mechanisms and responses of the mouse and human circadian systems to light. Both utilize a network of photosensitive retinal ganglion cells (pRGCs) expressing the photopigment melanopsin (OPN4). In both species action spectra and functional expression of OPN4 in vitro show that melanopsin has a lambdamax close to 480 nm. Anatomical findings demonstrate that there are multiple pRGC sub-types, with some evidence in mice, but little in humans, regarding their roles in regulating physiology and behavior. Studies in mice, non-human primates and humans, show that rods and cones project to and can modulate the light responses of pRGCs. Such an integration of signals enables the rods to detect dim light, the cones to detect higher light intensities and the integration of intermittent light exposure, whilst melanopsin measures bright light over extended periods of time. Although photoreceptor mechanisms are similar, sensitivity thresholds differ markedly between mice and humans. Mice can entrain to light at approximately 1 lux for a few minutes, whilst humans require light at high irradiance (>100's lux) and of a long duration (>30 min). The basis for this difference remains unclear. As our retinal light exposure is highly dynamic, and because photoreceptor interactions are complex and difficult to model, attempts to develop evidence-based lighting to enhance human circadian entrainment are very challenging. A way forward will be to define human circadian responses to artificial and natural light in the “real world” where light intensity, duration, spectral quality, time of day, light history and age can each be assessed.  
  Address Sleep & Circadian Neuroscience Institute (SCNi), Nuffield Department of Clinical Neurosciences, Sir William Dunn School of Pathology, Oxford Molecular Pathology Institute, South Parks Road, University of Oxford, Oxford OX1 3RF, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2079-7737 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32708259; PMCID:PMC7408241 Approved no  
  Call Number GFZ @ kyba @ Serial 3082  
Permanent link to this record
 

 
Author Fobert, E.K.; Burke da Silva, K.; Swearer, S.E. url  doi
openurl 
  Title Artificial light at night causes reproductive failure in clownfish Type Journal Article
  Year 2019 Publication (up) Biology Letters Abbreviated Journal Biol. Lett.  
  Volume 15 Issue 7 Pages 20190272  
  Keywords Animals  
  Abstract The Earth is getting brighter at night, as artificial light at night (ALAN) continues to increase and extend its reach. Despite recent recognition of the damaging impacts of ALAN on terrestrial ecosystems, research on ALAN in marine systems is comparatively lacking. To further our understanding of the impacts of ALAN on marine organisms, this study examines how the reproductive fitness of the common clownfish Amphiprion ocellaris is influenced by the presence of ALAN. We assessed how exposure to low levels of ALAN affects (i) frequency of spawning, (ii) egg fertilization success, and (iii) hatching success of A. ocellaris under control (12 : 12 day–night) and treatment (12 : 12 day–ALAN) light regimes. While we found exposure to ALAN had no impact on the frequency of spawning or fertilization success, ALAN had dramatic effects on hatching. Amphiprion ocellaris eggs incubated in the presence of ALAN simply did not hatch, resulting in zero survivorship of offspring. These findings suggest ALAN can significantly reduce reproductive fitness in a benthic-spawning reef fish. Further research in this field is necessary to fully understand the extent of this impact on population and community dynamics in the wild.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1744-9561 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2562  
Permanent link to this record
 

 
Author Li, Y.; Cheng, S.; Li, L.; Zhao, Y.; Shen, W.; Sun, X. url  doi
openurl 
  Title Light-exposure at night impairs mouse ovary development via cell apoptosis and DNA damage Type Journal Article
  Year 2019 Publication (up) Bioscience Reports Abbreviated Journal Biosci Rep  
  Volume 39 Issue Pages BSR20181464  
  Keywords Human Health; Animals; mouse models; ovaries  
  Abstract The alternation of light and dark rhythm causes a series of physiological, biochemical and metabolic changes in animals, which also alters the growth and development of animals, and feeding, migration, reproduction and other behavioral activities. In recent years, many studies have reported the effects of long-term (more than 6 weeks) illumination on ovarian growth and development. In this study, we observed the damage, repair and apoptosis of ovarian DNA in a short period of illumination. The results showed that, in short time (less than 2 weeks) illumination conditions, the 24 hrs-light treatment caused the reduction of total ovarian follicle number and downregulation of circadian clock related genes. Furthermore, the changed levels of serum sex hormones were also detected after 24 hrs-light exposure, of which the concentrations of LH (luteinizing hormone), FSH (follicle-stimulating hormone) and E2 (estradiol) were increased, but the concentration of PROG (progesterone) was decreased. Moreover, 24 hrs-light exposure increased the expression of DNA damage and repair related genes, the number of TUNEL and RAD51 positive cells. These results indicated that 24 hrs-light exposure for 4 days, 8days and 12 days increased DNA damage and cell apoptosis, thereby affecting the development of ovary.  
  Address Qingdao agricultural university, Qingdao, China; xfsun@qau.edu.cn  
  Corporate Author Thesis  
  Publisher Portland Press Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0144-8463 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30962269 Approved no  
  Call Number GFZ @ kyba @ Serial 2293  
Permanent link to this record
 

 
Author Bissonnette, T.H.; Csech, A.G. url  doi
openurl 
  Title Fertile Eggs from Pheasants in January by “Night-Lighting” Type Journal Article
  Year 1936 Publication (up) Bird-Banding Abbreviated Journal  
  Volume 7 Issue 3 Pages 108  
  Keywords Animals  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-3630 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2403  
Permanent link to this record
 

 
Author Hoffmann, J.; Schirmer, A.; Eccard, J.A. url  doi
openurl 
  Title Light pollution affects space use and interaction of two small mammal species irrespective of personality Type Journal Article
  Year 2019 Publication (up) BMC Ecology Abbreviated Journal BMC Ecol  
  Volume 19 Issue 1 Pages 26  
  Keywords Animals; Animal personality; Hirec; Interspecific interactions; Nighttime illumination; Outdoor enclosure; Rodents  
  Abstract BACKGROUND: Artificial light at night (ALAN) is one form of human-induced rapid environmental changes (HIREC) and is strongly interfering with natural dark-light cycles. Some personality types within a species might be better suited to cope with environmental change and therefore might be selected upon under ongoing urbanization. RESULTS: We used LED street lamps in a large outdoor enclosure to experimentally investigate the effects of ALAN on activity patterns, movement and interaction of individuals of two species, the bank vole (Myodes glareolus) and the striped field mouse (Apodemus agrarius). We analyzed effects combined with individual boldness score. Both species reduced their activity budget during daylight hours. While under natural light conditions home ranges were larger during daylight than during nighttime, this difference vanished under ALAN. Conspecifics showed reduced home range overlap, proximity and activity synchrony when subjected to nighttime illumination. Changes in movement patterns in reaction to ALAN were not associated with differences in boldness score of individuals. CONCLUSIONS: Our results suggest that light pollution can lead to changes in movement patterns and individual interactions in small mammals. This could lead to fitness consequences on the population level.  
  Address Animal Ecology, University of Potsdam, Maulbeerallee 1, 14469, Potsdam, Germany  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1472-6785 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31215409; PMCID:PMC6582560 Approved no  
  Call Number GFZ @ kyba @ Serial 2584  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: