|   | 
Details
   web
Records
Author Pack, D. W., Coffman, C. M., & Santiago, J. R.
Title A Year in Space for the CUbesat MULtispectral Observing System: CUMULOS Type Conference Article
Year 2019 Publication (up) 33rd Annual AIAA/USU Conference on Small Satellites Abbreviated Journal
Volume SSC19-XI-01 Issue Pages
Keywords Remote Sensing
Abstract CUMULOS is a three-camera system flying as a secondary payload on the Integrated Solar Array and Reflectarray Antenna (ISARA) mission with the goals of researching the use of uncooled commercial infrared cameras for Earth

remote sensing and demonstrating unique nighttime remote sensing capabilities. Three separate cameras comprise the CUMULOS payload: 1) a visible (VIS) Si CMOS camera, 2) a shortwave infrared (SWIR) InGaAs camera, and 3) a longwave infrared (LWIR) vanadium oxide microbolometer. This paper reviews on-orbit operations during the past year, in-space calibration observations and techniques, and Earth remote sensing highlights from the first year of space

operations. CUMULOS operations commenced on 8 June 2018 following the successful completion of the primary ISARA mission. Some of the unique contributions from the CUMULOS payloads include: 1) demonstrating the use of bright stars for on-orbit radiometric calibration of CubeSat payloads, 2) acquisition of science-quality nighttime lights data at 130-m resolution, and 3) operating the first simple Earth observing infrared payloads successfully flown on a CubeSat. Sample remote sensing results include images of: cities at night, ship lights (including fishing vessels), oil industry gas flares, serious wildfires, volcanic activity, and daytime and nighttime clouds. The CUMULOS VIS camera has measured calibrated nightlights imagery of major cities such as Los Angeles, Singapore, Shanghai, Tokyo, Kuwait City, Abu Dhabi, Jeddah, Istanbul, and London at more than 5x the resolution of VIIRS. The utility of these data for measuring light pollution, and mapping urban growth and infrastructure development at higher resolution than

VIIRS is being studied, with an emphasis placed on Los Angeles. The “Carr”, “Camp” and “Woolsey” fires from the 2018 California fire season were imaged with all three cameras and results highlight the excellent wildfire imaging

performance that can be achieved by small sensors. The SWIR camera has exhibited extreme sensitivity to flare and fire hotspots, and was even capable of detecting airglow-illuminated nighttime cloud structures by taking advantage of the strong OH emissions within its 0.9-1.7 micron bandpass. The LWIR microbolometer has proven successful at providing cloud context imagery for our nightlights mapping experiments, can detect very large fires and the brightest flare hotspots, and can also image terrain temperature variation and urban heat islands at 300-m resolution. CUMULOS capabilities show the potential of CubeSats and small sensors to perform several VIIRS-like nighttime mission areas in which wide area coverage can be traded for greater resolution over a smaller field of view. The sensor

has been used in collaboration with VIIRS researchers to explore these mission areas and side-by-side results will be presented illustrating the capabilities as well as the limitations of small aperture LEO CubeSat systems.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2736
Permanent link to this record
 

 
Author Kersavage, K.; Skinner, N.P.; Bullough, J.D.; Garvey, P.M.; Donnell, E.T.; Rea, M.S.
Title Investigation of flashing and intensity characteristics for vehicle-mounted warning beacons Type Journal Article
Year 2018 Publication (up) Accident Analysis & Prevention Abbreviated Journal Accident Analysis & Prevention
Volume 119 Issue Pages 23-28
Keywords Security; Public Safety; Lighting
Abstract Reducing the potential for crashes involving front line service workers and passing vehicles is important for increasing worker safety in work zones and similar locations. Flashing yellow warning beacons are often used to protect, delineate, and provide visual information to drivers within and approaching work zones. A nighttime field study using simulated workers, with and without reflective vests, present outside trucks was conducted to evaluate the effects of different warning beacon intensities and flash frequencies. Interactions between intensity and flash frequency were also analyzed. This study determined that intensitiesof 25/2.5 cd and 150/15 cd (peak/trough intensity) provided the farthest detection distances of the simulated worker. Mean detection distances in response to a flash frequency of 1 Hz were not statistically different from those in response to 4 Hz flashing. Simulated workers wearing reflective vests were seen the farthest distances away from the trucks for all combinations of intensity and flash frequency.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1950
Permanent link to this record
 

 
Author Sullivan, J.M.; Flannagan, M.J.
Title The role of ambient light level in fatal crashes: inferences from daylight saving time transitions Type Journal Article
Year 2002 Publication (up) Accident Analysis & Prevention Abbreviated Journal Accident Analysis & Prevention
Volume 34 Issue 4 Pages 487-498
Keywords Public Safety; Lighting
Abstract The purpose of this study was to estimate the size of the influence of ambient light level on fatal pedestrian and vehicle crashes in three scenarios. The scenarios were: fatal pedestrian crashes at intersections, fatal pedestrian crashes on dark rural roads, and fatal single-vehicle run-off-road crashes on dark, curved roads. Each scenario's sensitivity to light level was evaluated by comparing the number of fatal crashes across changes to and from daylight saving time, within daily time periods in which an abrupt change in light level occurs relative to official clock time. The analyses included 11 years of fatal crashes in the United States, between 1987 and 1997. Scenarios involving pedestrians were most sensitive to light level, in some cases showing up to seven times more risk at night over daytime. In contrast, single-vehicle run-off-road crashes showed little difference between light and dark time periods, suggesting factors other than light level play the dominant role in these crashes. These results are discussed in the context of the possible safety improvements offered by new developments in adaptive vehicle headlighting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2126
Permanent link to this record
 

 
Author Wood, J.M.; Isoardi, G.; Black, A.; Cowling, I.
Title Night-time driving visibility associated with LED streetlight dimming Type Journal Article
Year 2018 Publication (up) Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 121 Issue Pages 295-300
Keywords Public Safety
Abstract New LED streetlighting designs and dimming are being introduced worldwide, however, while their cost savings are well established, their impact on driving performance has received little attention. This study investigated the effect of streetlight dimming on night-time driving performance. Participants included 14 licensed drivers (mean age 34.2 +/- 4.9 years, range 27-40 years) who drove an instrumented vehicle around a closed circuit at night. Six LED streetlights were positioned along a 250 m, straight section and their light output varied between laps (dimming levels of 25%, 50%, 75% and 100% of maximum output; L25, L50, L75 and L100 respectively; at 100% average road surface luminance of 1.14 cd/m(2)). Driving tasks involved recognition distances and reaction times to a low contrast, moving target and a pedestrian walking at the roadside. Participants drove at an average driving speed of 55 km/hr in the streetlight zone. Streetlight dimming significantly delayed driver reaction times to the moving target (F3,13.06 = 6.404; p = 0.007); with an average 0.4 s delay in reaction times under L25 compared to L100, (estimated reduction in recognition distances of 6 m). Pedestrian recognition distances were significantly shorter under dimmed streetlight levels (F3,12.75 = 8.27; p = 0.003); average pedestrian recognition distances were 15 m shorter under L25 compared to L100, and 11 m shorter under L50 compared to L100. These data suggest that streetlight dimming impacts on driver visibility but it is unclear how these differences impact on safety; future studies are required to inform decisions on safe dimming levels for road networks.
Address School of Chemistry, Physics and Mechanical Engineering, Faculty of Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:30317014 Approved no
Call Number GFZ @ kyba @ Serial 2160
Permanent link to this record
 

 
Author Strobl, E.
Title The Impact of Typhoons on Economic Activity in the Philippines: Evidence from Nightlight Intensity Type Journal Article
Year 2019 Publication (up) ADB Economics Working Paper Series Abbreviated Journal
Volume 589 Issue Pages
Keywords Remote Sensing
Abstract We quantify the economic impact of typhoons in the Philippines. To this end we construct a panel data set of local economic activity derived from nightlight intensity satellite images and a cell level measure of typhoon damage constructed from storm track data, a wind field model, and a stylized damage function. Our econometric results reveal that there is a statistically and potentially economically significant, albeit short- lived, impact of typhoon destruction on local economic activity. Constructing risk profiles from a 60-year historical set of storms suggests that (near) future losses in economic activity for frequent (5-year return period) and rare (50-year return period) events are likely

to range from between 1.0% and 2.5%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2641
Permanent link to this record