|   | 
Details
   web
Records
Author Wilson, P.; Thums, M.; Pattiaratchi, C.; Whiting, S.; Pendoley, K.; Ferreira, L.C.; Meekan, M.
Title High predation of marine turtle hatchlings near a coastal jetty Type Journal Article
Year 2019 Publication (up) Biological Conservation Abbreviated Journal Biological Conservation
Volume 236 Issue Pages 571-579
Keywords Animals; Sea turtles; marine turtles; reptiles; marine reptiles; Flatback turtle; Natator depressus; jetty
Abstract Growing human populations are driving the development of coastal infrastructure such as port facilities. Here, we used passive acoustic telemetry to examine the effects of a jetty and artificial light on the rates of predation of flatback turtle (Natator depressus) hatchlings as they disperse through nearshore waters. When released near a jetty, around 70% of the tagged hatchlings were predated before they could transit the nearshore, irrespective of the presence or absence of artificial light. Only 3 to 23% of hatchlings encountered predators at a second study site nearby where there was no jetty and a similar amount of nesting activity. Evidence for predation was provided by rapid tag detachment due to prey handling by a predator or the extensive movement of the tags within the receiver array suggesting that the tag (and hatchling) was inside the stomach of a predator. We found that 70% of the fish predators that consumed tags used the jetty as a refuge during the day and expanded their range along nearshore waters at night, predating on hatchlings in areas adjacent to the jetty with the highest nesting density. Sampling of potential predators including lutjanid reef fishes under the jetty revealed the presence of turtle hatchlings in their gut contents. By providing daytime refuges for predators, nearshore structures such as jetties have the potential to concentrate predators and they may pose a significant threat to populations of vulnerable species. Such effects must be taken into consideration when assessing the environmental impacts associated with these structures.
Address Oceans Graduate School and the UWA Oceans Institute, The University of Western Australia, 35 Stirling Highway, Perth, Western Australia 6009, Australia; phillipa.wilson(at)research.uwa.edu.au
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2496
Permanent link to this record
 

 
Author Haddock, J.K.; Threlfall, C.G.; Law, B.; Hochuli, D.F.
Title Light pollution at the urban forest edge negatively impacts insectivorous bats Type Journal Article
Year 2019 Publication (up) Biological Conservation Abbreviated Journal Biological Conservation
Volume 236 Issue Pages 17-28
Keywords Animals
Abstract Connectivity and quality of vegetation in cities, including urban forests, can promote urban biodiversity. However the impact of anthropogenic pressures at the forest-matrix edge, particularly artificial light at night (ALAN), on connectivity has received little attention. We assessed the influence of artificial light at forest edges on insectivorous bats. We acoustically surveyed 31 forest edges across greater Sydney, Australia, half with mercury vapour streetlights and half in ambient darkness, and compared the bat assemblage and activity levels to urban forest interiors. We also sampled the flying insect community to establish whether changes in insect densities under lights drive changes in insectivorous bat activity. We recorded 9965 bat passes from 16 species or species groups throughout our acoustic survey. The activity of all bats, and bats hypothesised to be sensitive to artificial light, was consistently higher in forest interiors as opposed to edges. We found that slower flying bats adapted to cluttered vegetation or with a relatively high characteristic echolocation call frequency; Chalinolobus morio, Miniopterus australis, Vespadelus vulturnus, and Nyctophilus spp., were negatively affected by artificial light sources at the forest edge. The emergence time of Vespadelus vulturnus was also significantly delayed by the presence of streetlights at the forest edge. Conversely, generalist faster flying bats; Chalinolobus gouldii, Ozimops ridei, Austronomous australis, Saccolaimus flaviventris, and Miniopterus orianae oceanensis, were unaffected by artificial light at the edge of urban forest, and used light and dark forest edges in a similar way. Insect surveys showed that larger lepidopterans seemed to be attracted to lit areas, but in low numbers. Artificial light sources on the edges of urban forest have diverse effects on bats and insects, and should be considered an anthropogenic edge effect that can reduce available habitat and decrease connectivity for light-sensitive species.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2505
Permanent link to this record
 

 
Author Owens, A. C. S., Cochard, P., Durrant, J., Farnworth, B., Perkin, E. K., &Seymoure, B.
Title Light Pollution Is a Driver of Insect Declines Type Journal Article
Year 2019 Publication (up) Biological Conservation Abbreviated Journal
Volume in press Issue Pages 108259
Keywords Ecology; Animals
Abstract Insects around the world are rapidly declining. Concerns over what this loss means for food security and ecological communities have compelled a growing number of researchers to search for the key drivers behind the decline. Habitat loss, pesticide use, invasive species, and climate change all have likely played a role, but we posit here that artificial light at night (ALAN) is another important — but often overlooked — bringer of the insect apocalypse. We first discuss the history and extent of ALAN, and then present evidence that ALAN has led to insect declines through its interference with the development, movement, foraging, and reproductive success of diverse insect species, as well as its positive effect on insectivore predation. We conclude with a discussion of how artificial lights can be tuned to reduce their impacts on vulnerable populations. ALAN is unique among anthropogenic habitat disturbances in that it is fairly easy to ameliorate, and leaves behind no residual effects. Greater recognition of the ways in which ALAN impacts insects can help conservationists reduce or eliminate one of the major drivers of insect declines.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2649
Permanent link to this record
 

 
Author Mendes, C.P.; Carreira, D.; Pedrosa, F.; Beca, G.; Lautenschlager, L.; Akkawi, P.; Bercê, W.; Ferraz, K.M.P.M.B.; Galetti, M.
Title Landscape of human fear in Neotropical rainforest mammals Type Journal Article
Year 2019 Publication (up) Biological Conservation Abbreviated Journal Biological Conservation
Volume in press Issue Pages 108257
Keywords Animals; Remote Sensing; rainforest; Ecology
Abstract The landscape of fear has profound effects on the species behavior, with most organisms engaging in risk avoidance behaviors in areas perceived as riskier. Most risk avoidance behaviors, such as temporal avoidance, have severe trade-offs between foraging efficiency and risk reduction. Human activities are able to affect the species landscape of fear, by increasing mortality of individuals (i.e. hunting, roadkill) and by disruption of the clues used by the species to estimate predation risk (e.g. light pollution). In this study, we used an extensive camera-trapping and night-time light satellite imagery to evaluate whether human activities affect the diel activity patterns of 17 species of rainforest dwelling mammals. We found evidence of diel activity shifts in eight of 17 analyzed species, in which five species become 21.6 % more nocturnal and three species become 11.7% more diurnal in high disturbed areas. This activity shifts were observed for both diurnal and nocturnal species. Persecuted species (game and predators) were more susceptible to present activity shifts. Since changes in foraging activity may affect species fitness, the behavior of humans’ avoidance may be another driver of the Anthropocene defaunation.
Address Laboratório de Biologia da Conservação – LABIC, Departamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista – UNESP, Avenida 24A, 1515, 13506-900, Rio Claro, São Paulo, Brazil; calebepm3(at)hotmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2743
Permanent link to this record
 

 
Author Lao, S.; Robertson, B.A.; Anderson, A.W.; Blair, R.B.; Eckles, J.W.; Turner, R.J.; Loss, S.R.
Title The influence of artificial night at night and polarized light on bird-building collisions Type Journal Article
Year 2020 Publication (up) Biological Conservation Abbreviated Journal Biological Conservation
Volume 241 Issue Pages 108358
Keywords Animals
Abstract Collisions with buildings annually kill up to 1 billion birds in the United States. Bird-building collisions primarily occur at glass surfaces: birds often fail to perceive glass as a barrier and appear to be attracted to artificial light emitted from windows. However, some aspects of avian vision are poorly understood, including how bird responses to different types of light influence building collisions. Some evidence suggests birds can detect polarized light, which may serve as a cue to assist with migration orientation and/or detect water bodies. Dark, reflective surfaces, including glass, reflect high degrees of polarized light, causing polarized light pollution (PLP). However, no studies have analyzed the relationship between bird collisions and PLP reflected from buildings. Additionally, while artificial light at night (ALAN) is frequently implicated as a major factor influencing bird-building collisions, few studies have analyzed this relationship. We investigated both types of light pollution—PLP and ALAN—and their association with bird collisions at 48 façades of 13 buildings in Minneapolis, Minnesota, USA. We found that the area of glass emitting ALAN was the most important factor influencing collisions, and that this effect of ALAN was independent of overall glass area; this result provides strong support for turning off lights at night to reduce bird-building collisions. Although we found no relationship between PLP and collisions, additional research is needed to better understand bird responses to polarized light. Fully understanding how different aspects of light influence bird-building collisions can inform conservation efforts to reduce this major threat to birds.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0006-3207 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2757
Permanent link to this record