Home | [1–10] << 11 12 13 14 15 16 17 18 19 20 >> [21–30] |
![]() |
Records | |||||
---|---|---|---|---|---|
Author | Paranunzio, R.; Ceola, S.; Laio, F.; Montanari, A. | ||||
Title | Evaluating the Effects of Urbanization Evolution on Air Temperature Trends Using Nightlight Satellite Data | Type | Journal Article | ||
Year | 2019 | Publication ![]() |
Atmosphere | Abbreviated Journal | Atmosphere |
Volume | 10 | Issue | 3 | Pages | 117 |
Keywords | Remote Sensing | ||||
Abstract | Confounding factors like urbanization and land-use change could introduce uncertainty to the estimation of global temperature trends related to climate change. In this work, we introduce a new way to investigate the nexus between temporal trends of temperature and urbanization data at the global scale in the period from 1992 to 2013. We analyze air temperature data recorded from more than 5000 weather stations worldwide and nightlight satellite measurements as a proxy for urbanization. By means of a range of statistical methods, our results quantify and outline that the temporal evolution of urbanization affects temperature trends at multiple spatial scales with significant differences at regional and continental scales. A statistically significant agreement in temperature and nightlight trends is detected, especially in low and middle-income regions, where urbanization is rapidly growing. Conversely, in continents such as Europe and North America, increases in temperature trends are typically detected along with non-significant nightlight trends. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 2073-4433 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | GFZ @ kyba @ | Serial | 2249 | ||
Permanent link to this record | |||||
Author | Long, X.; Tie, X.; Zhou, J.; Dai, W.; Li, X.; Feng, T.; Li, G.; Cao, J.; An, Z. | ||||
Title | Impact of the Green Light Program on haze in the North China Plain, China | Type | Journal Article | ||
Year | 2019 | Publication ![]() |
Atmospheric Chemistry and Physics | Abbreviated Journal | Atmos. Chem. Phys. |
Volume | 19 | Issue | 17 | Pages | 11185-11197 |
Keywords | Economics; Lighting; Planning | ||||
Abstract | As the world's largest developing country, China has undergone ever-increasing demand for electricity during the past few decades. In 1996, China launched the Green Light Program (GLP), which became a national energy conservation activity for saving lighting electricity as well as an effective reduction of the coal consumption for power generation. Despite the great success of the GLP, its effects on haze have not been investigated and well understood. This study focused on assessing the potential coal saving induced by the improvement of luminous efficacy, the core of the GLP, and on estimating the consequent effects on the haze in the North China Plain (NCP), where a large number of power plants are located and are often engulfed by severe haze. The estimated potential coal saving induced by the GLP can reach a massive value of 120–323 million tons, accounting for 6.7 %–18.0 % of the total coal consumption for thermal power generation in China. There was a massive potential emission reduction of air pollutants from thermal power generation in the NCP, which was estimated to be 20.0–53.8 Gg for NOx and 6.9–18.7 Gg for SO2 in December 2015. The potential emission reduction induced by the GLP plays important roles in the haze formation, because the NOx and SO2 are important precursors for the formation of particles. To assess the impact of the GLP on haze, sensitivity studies were conducted by applying a regional chemical–dynamical model (WRF-CHEM). The model results suggest that in the case of lower-limit emission reduction, the PM2.5 concentration decreased by 2–5 µg m−3 in large areas of the NCP. In the case of upper-limit emission reduction, there was much more remarkable decrease in PM2.5 concentration (4–10 µg m−3). This study is a good example to illustrate that scientific innovation can induce important benefits for environment issues such as haze. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1680-7324 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | GFZ @ kyba @ | Serial | 2671 | ||
Permanent link to this record | |||||
Author | Doumbia, E.H.T.; Liousse, C.; Keita, S.; Granier, L.; Granier, C.; Elvidge, C.D.; Elguindi, N.; Law, K. | ||||
Title | Flaring emissions in Africa: Distribution, evolution and comparison with current inventories | Type | Journal Article | ||
Year | 2019 | Publication ![]() |
Atmospheric Environment | Abbreviated Journal | Atmospheric Environment |
Volume | 199 | Issue | Pages | 423-434 | |
Keywords | Remote Sensing | ||||
Abstract | Flaring emissions are a major concern due to large uncertainties in the amount of chemical compounds released into the atmosphere and their evolution with time. A methodology based on DMSP (Defense Meteorological Satellite Program) nighttime light data combined with regional gas flaring volumes from National Oceanic and Atmospheric Administration's National Centers for Environmental Information (NOAA-NCEI) has been developed to estimate flaring emissions. This method is validated in Nigeria where individual field company data are available. The spatial distribution of CO2, CH4, NMVOCs, CO, OC, BC, SO2 and NOx is derived for the African continent for the period 1995–2010. A range of the emissions due to flaring is estimated based on the range of emission factors (EFs) for each chemical species. An average decrease in CO2 emissions of about 30% is found over Africa from 1995 to 2010, with Nigeria being the largest contributor to this reduction (up to 50%). Changes in the spatial distribution with time indicate local increases, particularly at offshore platforms, which are attributed to a lack of regulations as well as aging infrastructures in oil and gas fields. Comparisons with current inventories reveal differences in the location and magnitude of point source emissions. For chemical compounds such as NMVOCs and CH4, the ECLIPSE and EDGAR country-level values are considerably higher than the highest flaring emission estimated in this study for 2005. For species such as CO, OC, BC, SO2 and NOx, the emissions provided by the ECLIPSE and EDGAR inventories are generally within the same order of magnitude as the average values found in this study, with the exception of OC, BC and SO2 in which EDGAR provides much lower emissions. These discrepancies are likely due to either differences in the methodologies used to estimate the emissions, in the values of the emission factors considered, or in the definition of flaring sector. Our current estimations suggest that BC, CH4 and CO2 flaring emissions in Africa account for 1–15% (on average 7%), 0.5–8% (on average 2%) and 8–13% (on average 11%) of African total anthropogenic emissions, respectively. The contribution of flaring to African anthropogenic emissions varies widely among countries. For example, in Nigeria the average emissions due to flaring are estimated to be as high as 18% for BC, 10% for CH4 and 50% for CO2, which is significantly greater than the continental average and highlights the importance of emissions in flaring areas. |
||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1352-2310 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | GFZ @ kyba @ | Serial | 2176 | ||
Permanent link to this record | |||||
Author | Zhang, J.; Jaker, S.L.; Reid, J.S.; Miller, S.D.; Solbrig, J.; Toth, T.D. | ||||
Title | Characterization and application of artificial light sources for nighttime aerosol optical depth retrievals using the Visible Infrared Imager Radiometer Suite Day/Night Band | Type | Journal Article | ||
Year | 2019 | Publication ![]() |
Atmospheric Measurement Techniques | Abbreviated Journal | Atmos. Meas. Tech. |
Volume | 12 | Issue | 6 | Pages | 3209-3222 |
Keywords | Remote Sensing | ||||
Abstract | Using nighttime observations from Visible Infrared Imager Radiometer Suite (VIIRS) Day/Night band (DNB), the characteristics of artificial light sources are evaluated as functions of observation conditions, and incremental improvements are documented on nighttime aerosol retrievals using VIIRS DNB data on a regional scale. We find that the standard deviation of instantaneous radiance for a given artificial light source is strongly dependent upon the satellite viewing angle but is weakly dependent on lunar fraction and lunar angle. Retrieval of nighttime aerosol optical thickness (AOT) based on the novel use of these artificial light sources is demonstrated for three selected regions (United States, Middle East and India) during 2015. Reasonable agreement is found between nighttime AOTs from the VIIRS DNB and temporally adjacent daytime AOTs from the AErosol RObotic NETwork (AERONET) as well as from coincident nighttime AOT retrievals from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), indicating the potential of this method to begin filling critical gaps in diurnal AOT information at both regional and global scales. Issues related to cloud, snow and ice contamination during the winter season, as well as data loss due to the misclassification of thick aerosol plumes as clouds, must be addressed to make the algorithm operationally robust. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1867-8548 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | GFZ @ kyba @ | Serial | 2583 | ||
Permanent link to this record | |||||
Author | Solbrig, J.E.; Miller, S.D.; Zhang, J.; Grasso, L.; Kliewer, A. | ||||
Title | Assessing the stability of surface lights for use in retrievals of nocturnal atmospheric parameters | Type | Journal Article | ||
Year | 2020 | Publication ![]() |
Atmospheric Measurement Techniques | Abbreviated Journal | Atmos. Meas. Tech. |
Volume | 13 | Issue | 1 | Pages | 165-190 |
Keywords | Remote Sensing | ||||
Abstract | The detection and characterization of aerosols are inherently limited at night because the important information provided by visible spectrum observations is not available and infrared bands have limited sensitivity to aerosols. The VIIRS Day–Night Band (DNB) onboard the Suomi-NPP satellite is a first-of-its-kind calibrated sensor capable of collecting visible and near-infrared observations during both day and night. Multiple studies have suggested that anthropogenic light emissions such as those from cities and gas flares may be useable as light sources for the retrieval of atmospheric properties, including cloud and aerosol optical depth. However, their use in this capacity requires proper characterization of their intrinsic variation, which represents a source of retrieval uncertainty. In this study we use 18 months of cloud-cleared VIIRS data collected over five selected geographic domains to assess the stability of anthropogenic light emissions and their response to varied satellite and lunar geometries. Time series are developed for each location in each domain for DNB radiance, four infrared channels, and satellite and lunar geometric variables, and spatially resolved correlation coefficients are computed between DNB radiance and each of the other variables. This analysis finds that while many emissive light sources are too unstable to be used reliably for atmospheric retrievals, some sources exhibit a sufficient stability (relative standard deviation <20 %). Additionally, we find that while the radiance variability of surrounding surfaces (i.e., unpopulated land and ocean) is largely dependent on lunar geometry, the anthropogenic light sources are more strongly correlated with satellite viewing geometry. Understanding the spatially resolved relationships between DNB radiance and other parameters is a necessary first step towards characterizing anthropogenic light emissions and establishes a framework for a model to describe variability in a more general sense. | ||||
Address | |||||
Corporate Author | Thesis | ||||
Publisher | Place of Publication | Editor | |||
Language | Summary Language | Original Title | |||
Series Editor | Series Title | Abbreviated Series Title | |||
Series Volume | Series Issue | Edition | |||
ISSN | 1867-8548 | ISBN | Medium | ||
Area | Expedition | Conference | |||
Notes | Approved | no | |||
Call Number | GFZ @ kyba @ | Serial | 3005 | ||
Permanent link to this record |