toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Daugaard, S.; Markvart, J.; Bonde, J.P.; Christoffersen, J.; Garde, A.H.; Hansen, A.M.; Schlunssen, V.; Vestergaard, J.M.; Vistisen, H.T.; Kolstad, H.A. url  doi
openurl 
  Title Light Exposure during Days with Night, Outdoor, and Indoor Work Type Journal Article
  Year 2019 Publication (up) Annals of Work Exposures and Health Abbreviated Journal Ann Work Expo Health  
  Volume in press Issue Pages  
  Keywords Human Health  
  Abstract OBJECTIVE: To assess light exposure during days with indoor, outdoor, and night work and days off work. METHODS: Light intensity was continuously recorded for 7 days across the year among indoor (n = 170), outdoor (n = 151), and night workers (n = 188) in Denmark (55-56 degrees N) equipped with a personal light recorder. White light intensity, duration above 80, 1000, and 2500 lux, and proportion of red, green, and blue light was depicted by time of the day and season for work days and days off work. RESULTS: Indoor workers' average light exposure only intermittently exceeded 1000 lux during daytime working hours in summer and never in winter. During daytime working hours, most outdoor workers exceeded 2500 lux in summer and 1000 lux in winter. Night workers spent on average 10-50 min >80 lux when working night shifts. During days off work, indoor and night workers were exposed to higher light intensities than during work days and few differences were seen between indoor, outdoor, and night workers. The spectral composition of light was similar for indoor, outdoor, and night workers during days at and off work. CONCLUSION: The night workers of this study were during night hours on average exposed for a limited time to light intensities expected to suppress melatonin. The indoor workers were exposed to light levels during daylight hours that may reduce general well-being and mood, especially in winter. Outdoor workers were during summer daylight hours exposed to light levels comparable to those used for the treatment of depression.  
  Address Department of Occupational Medicine, Danish Ramazinni Centre, Aarhus University Hospital, 8200 Aarhus, Denmark  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2398-7308 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30865270 Approved no  
  Call Number GFZ @ kyba @ Serial 2268  
Permanent link to this record
 

 
Author Cherrie, J.W. url  doi
openurl 
  Title Shedding Light on the Association between Night Work and Breast Cancer Type Journal Article
  Year 2019 Publication (up) Annals of Work Exposures and Health Abbreviated Journal Ann Work Expo Health  
  Volume in press Issue Pages  
  Keywords Commentary; Human Health  
  Abstract Shift work that involves circadian disruption has been classified as probably carcinogenic to humans by the International Agency for Research on Cancer, although more recent epidemiological evidence is not consistent. Several mechanisms have been postulated to explain an association between night work and female breast cancer, but the most likely is suppression of the hormone melatonin by light exposure at night. Three articles recently published in this journal describe aspects of exposure to light during night work. These articles and other evidence suggest that nighttime light levels may not always be sufficient to affect melatonin production, which could in part explain the inconsistencies in the epidemiological data. There is need to improve the specificity and reliability of exposure assessments in future epidemiological studies of night shift workers.  
  Address Institute of Occupational Medicine, Research Avenue North, Edinburgh, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2398-7308 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31175355 Approved no  
  Call Number GFZ @ kyba @ Serial 2530  
Permanent link to this record
 

 
Author Garstang, R.H. url  doi
openurl 
  Title The Status and Prospects for Ground-Based Observatory Sites Type Journal Article
  Year 1989 Publication (up) Annual Review of Astronomy and Astrophysics Abbreviated Journal Annu. Rev. Astron. Astrophys.  
  Volume 27 Issue 1 Pages 19-40  
  Keywords Skyglow  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0066-4146 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2437  
Permanent link to this record
 

 
Author Gaston, K.J.; Davies, T.W.; Nedelec, S.L.; Holt, L.A. url  doi
openurl 
  Title Impacts of Artificial Light at Night on Biological Timings Type Journal Article
  Year 2017 Publication (up) Annual Review of Ecology, Evolution, and Systematics Abbreviated Journal Annu. Rev. Ecol. Evol. Syst.  
  Volume 48 Issue 1 Pages 49-68  
  Keywords Review; Animals; Plants  
  Abstract The use of artificial lighting to illuminate the night has provided substantial benefits to humankind. It has also disrupted natural daily, seasonal, and lunar light cycles as experienced by a diversity of organisms, and hence it has also altered cues for the timings of many biological activities. Here we review the evidence for impacts of artificial nighttime lighting on these timings. Although the examples are scattered, concerning a wide variety of species and environments, the breadth of such impacts is compelling. Indeed, it seems reasonable to conclude that the vast majority of impacts of artificial nighttime lighting stem from effects on biological timings. This adds support to arguments that artificial nighttime lighting has a quite pervasive and marked impact on ecological systems, that the rapid expansion in the global extent of both direct illuminance and skyglow is thus of significant concern, and that a widespread implementation of mitigation measures is required.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1543-592X ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2449  
Permanent link to this record
 

 
Author David, A.; Smet, K.A.G.; Whitehead, L. url  doi
openurl 
  Title Methods for Assessing Quantity and Quality of Illumination Type Journal Article
  Year 2019 Publication (up) Annual Review of Vision Science Abbreviated Journal Annu Rev Vis Sci  
  Volume in press Issue Pages  
  Keywords Review; Vision  
  Abstract Human vision provides useful information about the shape and color of the objects around us. It works well in many, but not all, lighting conditions. Since the advent of human-made light sources, it has been important to understand how illumination affects vision quality, but this has been surprisingly difficult. The widespread introduction of solid-state light emitters has increased the urgency of this problem. Experts still debate how lighting can best enable high-quality vision-a key issue since about one-fifth of global electrical power production is used to make light. Photometry, the measurement of the visual quantity of light, is well established, yet significant uncertainties remain. Colorimetry, the measurement of color, has achieved good reproducibility, but researchers still struggle to understand how illumination can best enable high-quality color vision. Fortunately, in recent years, considerable progress has been made. Here, we summarize the current understanding and discuss key areas for future study. Expected final online publication date for the Annual Review of Vision Science Volume 5 is September 16, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.  
  Address Department of Physics and Astronomy, University of British Columbia, Vancouver BC V6T 1Z1, Canada; email: lorne.whitehead@ubc.ca  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2374-4642 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31226013 Approved no  
  Call Number GFZ @ kyba @ Serial 2576  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: