|   | 
Details
   web
Records
Author Walker, W.H. 2nd; Borniger, J.C.; Gaudier-Diaz, M.M.; Hecmarie Melendez-Fernandez, O.; Pascoe, J.L.; Courtney DeVries, A.; Nelson, R.J.
Title Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior Type Journal Article
Year 2019 Publication Molecular Psychiatry Abbreviated Journal Mol Psychiatry
Volume Issue Pages s41380-019-0430-4
Keywords Human health; physiology; brain
Abstract The advent and wide-spread adoption of electric lighting over the past century has profoundly affected the circadian organization of physiology and behavior for many individuals in industrialized nations; electric lighting in homes, work environments, and public areas have extended daytime activities into the evening, thus, increasing night-time exposure to light. Although initially assumed to be innocuous, chronic exposure to light at night (LAN) is now associated with increased incidence of cancer, metabolic disorders, and affective problems in humans. However, little is known about potential acute effects of LAN. To determine whether acute exposure to low-level LAN alters brain function, adult male, and female mice were housed in either light days and dark nights (LD; 14 h of 150 lux:10 h of 0 lux) or light days and low level light at night (LAN; 14 h of 150 lux:10 h of 5 lux). Mice exposed to LAN on three consecutive nights increased depressive-like responses compared to mice housed in dark nights. In addition, female mice exposed to LAN increased central tendency in the open field. LAN was associated with reduced hippocampal vascular endothelial growth factor-A (VEGF-A) in both male and female mice, as well as increased VEGFR1 and interleukin-1beta mRNA expression in females, and reduced brain derived neurotrophic factor mRNA in males. Further, LAN significantly altered circadian rhythms (activity and temperature) and circadian gene expression in female and male mice, respectively. Altogether, this study demonstrates that acute exposure to LAN alters brain physiology and can be detrimental to well-being in otherwise healthy individuals.
Address Department of Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA
Corporate Author Thesis
Publisher (down) Nature Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1359-4184 ISBN Medium
Area Expedition Conference
Notes PMID:31138889 Approved no
Call Number IDA @ john @ Serial 2509
Permanent link to this record
 

 
Author Schirmer, A.E.; Gallemore, C.; Liu, T.; Magle, S.; DiNello, E.; Ahmed, H.; Gilday, T.
Title Mapping behaviorally relevant light pollution levels to improve urban habitat planning Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 9 Issue 1 Pages 1-13
Keywords Animals; Remote Sensing; Society; remote sensing; cities; Urban planning; urban wildlife; urban ecology
Abstract Artificial nighttime lights have important behavioral and ecological effects on wildlife. Combining laboratory and field techniques, we identified behaviorally relevant levels of nighttime light and mapped the extent of these light levels across the city of Chicago. We began by applying a Gaussian finite mixture model to 998 sampled illumination levels around Chicago to identify clusters of light levels. A simplified sample of these levels was replicated in the laboratory to identify light levels at which C57BL/6J mice exhibited altered circadian activity patterns. We then used camera trap and high-altitude photographic data to compare our field and laboratory observations, finding activity pattern changes in the field consistent with laboratory observations. Using these results, we mapped areas across Chicago exposed to estimated illumination levels above the value associated with statistically significant behavioral changes. Based on this measure, we found that as much as 36% of the greenspace in the city is in areas illuminated at levels greater than or equal to those at which we observe behavioral differences in the field and in the laboratory. Our findings provide evidence that artificial lighting patterns may influence wildlife behavior at a broad scale throughout urban areas, and should be considered in urban habitat planning.
Address Northeastern Illinois University, Dept. of Biology, 5500 St. Louis Ave., Chicago, IL, 60625, USA; a-schirmer(at) neiu.edu)
Corporate Author Thesis
Publisher (down) Nature Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2615
Permanent link to this record
 

 
Author Sanders, D.; Frago, E.; Kehoe, R.; Patterson, C.; Gaston, K.J.
Title A meta-analysis of biological impacts of artificial light at night Type Journal Article
Year 2020 Publication Nature Ecology & Evolution Abbreviated Journal Nat Ecol Evol
Volume Issue Pages
Keywords Ecology; meta-analysis; biology
Abstract Natural light cycles are being eroded over large areas of the globe by the direct emissions and sky brightening that result from sources of artificial night-time light. This is predicted to affect wild organisms, particularly because of the central role that light regimes play in determining the timing of biological activity. Although many empirical studies have reported such effects, these have focused on particular species or local communities and have thus been unable to provide a general evaluation of the overall frequency and strength of these impacts. Using a new database of published studies, we show that exposure to artificial light at night induces strong responses for physiological measures, daily activity patterns and life history traits. We found particularly strong responses with regards to hormone levels, the onset of daily activity in diurnal species and life history traits, such as the number of offspring, predation, cognition and seafinding (in turtles). So far, few studies have focused on the impact of artificial light at night on ecosystem functions. The breadth and often strength of biological impacts we reveal highlight the need for outdoor artificial night-time lighting to be limited to the places and forms-such as timing, intensity and spectrum-where it is genuinely required by the people using it to minimize ecological impacts.
Address Environment and Sustainability Institute, University of Exeter, Penryn, UK.; k.j.gaston ( at ) exeter.ac.uk
Corporate Author Thesis
Publisher (down) Nature Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2397-334X ISBN Medium
Area Expedition Conference
Notes PMID:33139919 Approved no
Call Number IDA @ john @ Serial 3197
Permanent link to this record
 

 
Author Dautovich, N.D.; Schreiber, D.R.; Imel, J.L.; Tighe, C.A.; Shoji, K.D.; Cyrus, J.; Bryant, N.; Lisech, A.; O'Brien, C.; Dzierzewski, J.M.
Title A systematic review of the amount and timing of light in association with objective and subjective sleep outcomes in community-dwelling adults Type Journal Article
Year 2019 Publication Sleep Health Abbreviated Journal Sleep Health
Volume 5 Issue 1 Pages 31–48
Keywords Human Health; Review; light timing; Sleep
Abstract Light is considered the dominant environmental cue, or zeitgeber, influencing the sleep-wake cycle. Despite recognizing the importance of light for our well-being, less is known about the specific conditions under which light is optimally associated with better sleep. Therefore, a systematic review was conducted to examine the association between the amount and timing of light exposure in relation to sleep outcomes in healthy, community-dwelling adults. A systematic search was conducted of four databases from database inception to June 2016. In total, 45 studies met the review eligibility criteria with generally high study quality excepting for the specification of eligibility criteria and the justification of sample size. The majority of studies involved experimental manipulation of light (n = 32) vs observational designs (n = 13). Broad trends emerged suggesting that (1) bright light (>1000 lux) has positive implications for objectively assessed sleep outcomes compared to dim (<100 lux) and moderate light (100-1000 lux) and (2) bright light (>1000 lux) has positive implications for subjectively assessed sleep outcomes compared to moderate light (100-1000 lux). Effects due to the amount of light are moderated by the timing of light exposure such that, for objectively assessed sleep outcomes, brighter morning and evening light exposure are consistent with a shift in the timing of the sleep period to earlier and later in the day, respectively. For subjectively assessed sleep outcomes, brighter light delivered in the morning was associated with self-reported sleep improvements and brighter evening light exposure was associated with worse self-reported sleep.
Address Psychology Department, Virginia Commonwealth University, 800 W Franklin St, Room 203, PO Box 842018, Richmond, VA 23284-2018 USA; ndautovich(at)vcu.edu
Corporate Author Thesis
Publisher (down) National Sleep Foundation Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2352-7218 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2050
Permanent link to this record
 

 
Author Gallaway, T.; Olsen, R.N.; Mitchell, D.M.
Title Blinded by the Light: Economic Analysis of Severe Light Pollution Type Journal Article
Year 2013 Publication Journal of Economic Insight Abbreviated Journal J Econ Insight
Volume 39 Issue 1 Pages 45-63
Keywords Economics; light pollution
Abstract This paper examines severe light pollution such as commonly found in large urban areas. Light pollution is the unintended negative consequences of poorly designed and injudiciously used artificial lighting. Light pollution generates significant costs including wasted energy and damage to human health, wildlife, recreation, and the beauty of the night sky. Typically, light-pollution models emphasize population density and ignore economic factors. Economic analysis of the issue has been singularly limited. Previous economic research has focused on widespread, but very low levels of light pollution. This paper makes a unique contribution by analyzing economic factors of severe light pollution. The paper utilizes economic data from the World Bank and unique remote sensing data for 184 countries to quantify the economic causes of severe light pollution. Fractional logit models confirm the importance of population and economic factors alike.
Address Department of Economics, Missouri State University; TerrelGallaway(at)missouristate.edu
Corporate Author Thesis
Publisher (down) Missouri Valley Economic Association Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0361-6576 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2338
Permanent link to this record