|   | 
Details
   web
Records
Author Petritoli, E.; Leccese, F.; Pizzuti, S.; Pieroni, F.
Title Smart Lighting as basic building block of Smart City: an energy performance comparative case study Type Journal Article
Year 2018 Publication Measurement Abbreviated Journal Measurement
Volume in press Issue Pages
Keywords Energy
Abstract The aim of this work is to simulate and compare the energy savings potentially applicable to the consumption data of the Smart Street pilot system located at the ENEA Casaccia R.C. (Rome). The astronomical lighting system energy consumption (baseline) is compared to the simulation of a pre-defined regulation: it allows the lights dimming (and therefore a reduction of consumptions) based on a statistics averages of the traffic flow rate, differentiated according to the day of the week. Then the baseline consumption is compared to the simulation of an adaptive configuration based on the traffic flow rate.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0263-2241 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2147
Permanent link to this record
 

 
Author Smith, H.M.; Neaves, L.E.; Divljan, A.
Title Predation on cicadas by an Australian Flying-fox Pteropus poliocephalus based on DNA evidence Type Journal Article
Year 2018 Publication Australian Zoologist Abbreviated Journal Australian Zoologist
Volume in press Issue Pages
Keywords Animals
Abstract Historically, reports of insectivory in family Pteropodidae have largely been anecdotal and thought to be an incidental corollary of flying-foxes feeding on plant products. More recent direct observations of flying-foxes catching and consuming insects, as well as advances in techniques that increase our ability to detect dietary items, suggest that this behaviour may be deliberate and more common than previously thought. Usually, multiple insects are consumed, but it appears that flying-foxes hunt and eat them one at a time. However, we have collected and photographed oral ejecta pellets under trees with high flying-fox activity, some containing evidence of multiple masticated insects. Further genetic analysis proved that these pellets came from Grey-headed Flying-foxes Pteropus poliocephalus. We propose that flying-foxes use an array of insect feeding strategies, most likely in response to variation in insect abundance and activity, as well as abiotic factors such as light and temperature.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0067-2238 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2148
Permanent link to this record
 

 
Author Hines, C.W.; Fang, Y.; Chan, V.K.S.; Stiller, K.T.; Brauner, C.J.; Richards, J.G.
Title The effect of salinity and photoperiod on thermal tolerance of Atlantic and coho salmon reared from smolt to adult in recirculating aquaculture systems Type Journal Article
Year 2018 Publication Comparative Biochemistry and Physiology. Part A, Molecular & Integrative Physiology Abbreviated Journal Comp Biochem Physiol A Mol Integr Physiol
Volume 230 Issue Pages 1-6
Keywords Animals
Abstract Land-based, closed containment salmon aquaculture involves rearing salmon from smolt to adult in recirculating aquaculture systems (RAS). Unlike in open-net pen aquaculture, rearing conditions can be specified in RAS in order to optimize growth and physiological stress tolerance. The environmental conditions that yield optimal stress tolerance in salmon are, however, unknown. To address this knowledge gap, we reared Atlantic (Salmo salar) and coho (Oncorhynchus kisutch) salmon in 7 separate RASs for 400days post-smoltification under 2 photoperiods (24:0 or 12:12, light:dark) and 4 salinities (2.5, 5, 10 or 30ppt.) and assessed the effects of these conditions on thermal tolerance. We found that over the first 120days post-smoltification, rearing coho under a 24:0 photoperiod resulted in a ~2 degrees C lower critical thermal maxima (CTmax) than in coho reared under a 12:12 photoperiod. This photoperiod effect did not persist at 200 and 400days, which was coincident with an overall decrease in CTmax in coho. Finally, Atlantic salmon had a higher CTmax (~28 degrees C) compared to coho (~26 degrees C) at 400days post-smoltification. Overall, these findings are important for the future implications of RAS and for the aquaculture industry to help identify physiologically sensitive time stages.
Address Department of Zoology, The University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1095-6433 ISBN Medium
Area Expedition Conference
Notes PMID:30590111 Approved no
Call Number GFZ @ kyba @ Serial 2149
Permanent link to this record
 

 
Author Sullivan, S.M.P.; Hossler, K.; Meyer, L.A.
Title Artificial lighting at night alters aquatic-riparian invertebrate food webs Type Journal Article
Year 2019 Publication Ecological Applications : a Publication of the Ecological Society of America Abbreviated Journal Ecol Appl
Volume 29 Issue 1 Pages e01821
Keywords Ecology; Animals
Abstract Artificial lighting at night (ALAN) is a global phenomenon that can be detrimental to organisms at individual and population levels, yet potential consequences for communities and ecosystem functions are less resolved. Riparian systems may be particularly vulnerable to ALAN. We investigated the impacts of ALAN on invertebrate community composition and food web characteristics for linked aquatic-terrestrial ecosystems. We focused on food chain length (FCL), a central property of ecological communities that can influence their structure, function, and stability; and the contribution of aquatically derived energy (i.e., nutritional subsidies originating from stream periphyton). We collected terrestrial arthropods and emergent aquatic insects from a suite of stream and wetland sites in Columbus, Ohio, USA. Stable isotopes of carbon ((13) C) and nitrogen ((15) N) were used to infer FCL and contribution of aquatically derived energy. We found that moderate-to-high levels of ALAN altered invertebrate community composition, favoring primarily predators and detritivores. Impacts of ALAN, however, were very taxon specific as illustrated, for example, by the negative impact of ALAN on the abundance of orb-web spiders belonging to the families Tetragnathidae and Araneidae: key invertebrate riparian predators. Most notably, we observed decreases in both invertebrate FCL and reliance on aquatically derived energy under ALAN (although aquatic energetic contributions appeared to increase again at higher levels of ALAN), in addition to shifts in the timing of reciprocal nutritional subsidies. Our study demonstrates that ALAN can alter the flows of energy between aquatic and terrestrial systems, thereby representing an environmental perturbation that can cross ecosystem boundaries. Given projections for global increases in ALAN, both in terms of coverage and intensity, these results have broad implications for stream ecosystem structure and function.
Address Schiermeier Olentangy River Wetland Research Park, School of Environment & Natural Resources, The Ohio State University, 2021 Coffey Road, Columbus, Ohio, 43210, USA
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1051-0761 ISBN Medium
Area Expedition Conference
Notes PMID:30566269 Approved no
Call Number GFZ @ kyba @ Serial 2150
Permanent link to this record
 

 
Author Jechow, A.; Kolláth, Z.; Lerner, A.; Hänel, A.; Shashar, N.; Hölker, F.; Kyba, C.C.M.
Title Measuring Light Pollution with Fisheye Lens Imagery from A Moving Boat–A Proof of Concept Type Journal Article
Year 2017 Publication International Journal of Sustainable Lighting Abbreviated Journal
Volume 19 Issue 1 Pages 15-25
Keywords Skyglow; Instrumentation
Abstract Near all-sky imaging photometry was performed from a boat on the Gulf of Aqaba to measure the night sky brightness in a coastal environment. The boat was not anchored, and therefore drifted and rocked. The camera was mounted on a tripod without any inertia/motion stabilization. A commercial digital single lens reflex (DSLR) camera and fisheye lens were used with ISO setting of 6400, with the exposure time varied between 0.5 s and 5 s. We find that despite movement of the vessel the measurements produce quantitatively comparable results apart from saturation effects. We discuss the potential and limitations of this method for mapping light pollution in marine and freshwater systems. This work represents the proof of concept that all-sky photometry with a commercial DSLR camera is a viable tool to determine light pollution in an ecological context from a moving boat.
Address
Corporate Author Thesis
Publisher (up) Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2151
Permanent link to this record