toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bharti, N.; Tatem, A.J.; Ferrari, M.J.; Grais, R.F.; Djibo, A.; Grenfell, B.T. url  doi
openurl 
  Title Explaining seasonal fluctuations of measles in Niger using nighttime lights imagery Type Journal Article
  Year 2011 Publication Science (New York, N.Y.) Abbreviated Journal Science  
  Volume 334 Issue 6061 Pages 1424-1427  
  Keywords Remote Sensing; Human Health; Cities; Emigration and Immigration; Epidemics; *Epidemiologic Methods; Humans; Light; Measles/*epidemiology/transmission; Niger/epidemiology; *Population Density; Remote Sensing Technology; *Seasons; Spacecraft  
  Abstract Measles epidemics in West Africa cause a significant proportion of vaccine-preventable childhood mortality. Epidemics are strongly seasonal, but the drivers of these fluctuations are poorly understood, which limits the predictability of outbreaks and the dynamic response to immunization. We show that measles seasonality can be explained by spatiotemporal changes in population density, which we measure by quantifying anthropogenic light from satellite imagery. We find that measles transmission and population density are highly correlated for three cities in Niger. With dynamic epidemic models, we demonstrate that measures of population density are essential for predicting epidemic progression at the city level and improving intervention strategies. In addition to epidemiological applications, the ability to measure fine-scale changes in population density has implications for public health, crisis management, and economic development.  
  Address Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA. nbharti@princeton.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0036-8075 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:22158822; PMCID:PMC3891598 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2770  
Permanent link to this record
 

 
Author Bharti, N.; Tatem, A.J. url  doi
openurl 
  Title Fluctuations in anthropogenic nighttime lights from satellite imagery for five cities in Niger and Nigeria Type Journal Article
  Year 2018 Publication Scientific Data Abbreviated Journal Sci Data  
  Volume 5 Issue Pages 180256  
  Keywords Remote Sensing  
  Abstract Dynamic measures of human populations are critical for global health management but are often overlooked, largely because they are difficult to quantify. Measuring human population dynamics can be prohibitively expensive in under-resourced communities. Satellite imagery can provide measurements of human populations, past and present, to complement public health analyses and interventions. We used anthropogenic illumination from publicly accessible, serial satellite nighttime images as a quantifiable proxy for seasonal population variation in five urban areas in Niger and Nigeria. We identified population fluxes as the mechanistic driver of regional seasonal measles outbreaks. Our data showed 1) urban illumination fluctuated seasonally, 2) corresponding population fluctuations were sufficient to drive seasonal measles outbreaks, and 3) overlooking these fluctuations during vaccination activities resulted in below-target coverage levels, incapable of halting transmission of the virus. We designed immunization solutions capable of achieving above-target coverage of both resident and mobile populations. Here, we provide detailed data on brightness from 2000-2005 for 5 cities in Niger and Nigeria and detailed methodology for application to other populations.  
  Address WorldPop, Department of Geography and Environment, University of Southampton; Flowminder Foundation, Southampton, SO17 1BJ, UK  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2052-4463 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30422123; PMCID:PMC6233255 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2769  
Permanent link to this record
 

 
Author Walker, W.H. 2nd; Borniger, J.C.; Gaudier-Diaz, M.M.; Hecmarie Melendez-Fernandez, O.; Pascoe, J.L.; Courtney DeVries, A.; Nelson, R.J. url  doi
openurl 
  Title Acute exposure to low-level light at night is sufficient to induce neurological changes and depressive-like behavior Type Journal Article
  Year 2019 Publication Molecular Psychiatry Abbreviated Journal Mol Psychiatry  
  Volume Issue Pages in press  
  Keywords Animals  
  Abstract The advent and wide-spread adoption of electric lighting over the past century has profoundly affected the circadian organization of physiology and behavior for many individuals in industrialized nations; electric lighting in homes, work environments, and public areas have extended daytime activities into the evening, thus, increasing night-time exposure to light. Although initially assumed to be innocuous, chronic exposure to light at night (LAN) is now associated with increased incidence of cancer, metabolic disorders, and affective problems in humans. However, little is known about potential acute effects of LAN. To determine whether acute exposure to low-level LAN alters brain function, adult male, and female mice were housed in either light days and dark nights (LD; 14 h of 150 lux:10 h of 0 lux) or light days and low level light at night (LAN; 14 h of 150 lux:10 h of 5 lux). Mice exposed to LAN on three consecutive nights increased depressive-like responses compared to mice housed in dark nights. In addition, female mice exposed to LAN increased central tendency in the open field. LAN was associated with reduced hippocampal vascular endothelial growth factor-A (VEGF-A) in both male and female mice, as well as increased VEGFR1 and interleukin-1beta mRNA expression in females, and reduced brain derived neurotrophic factor mRNA in males. Further, LAN significantly altered circadian rhythms (activity and temperature) and circadian gene expression in female and male mice, respectively. Altogether, this study demonstrates that acute exposure to LAN alters brain physiology and can be detrimental to well-being in otherwise healthy individuals.  
  Address Department of Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, 26506, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1359-4184 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31138889; PMCID:PMC6881534 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2768  
Permanent link to this record
 

 
Author Henderson, J.V.; Storeygard, A.; Weil, D.N. url  doi
openurl 
  Title A Bright Idea for Measuring Economic Growth Type Journal Article
  Year 2011 Publication The American Economic Review Abbreviated Journal Am Econ Rev  
  Volume 101 Issue 3 Pages 194-199  
  Keywords Remote Sensing  
  Abstract The quantity of human-generated light visible from outer space reflects variation in both population density and income per capita. In this paper we explore the usefulness of the change in visible light as a measure of GDP growth. We discuss the data, and then present a statistical framework that uses lights growth to augment existing income growth measures, assuming that measurement errors in the two series are uncorrelated. For some countries with very poor income measurement, we significantly revise estimates of growth. Our technique also produces growth estimates for cities or regions where no other data are available.  
  Address Brown University and NBER  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0002-8282 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:25076786; PMCID:PMC4112959 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2767  
Permanent link to this record
 

 
Author Mishra, I.; Knerr, R.M.; Stewart, A.A.; Payette, W.I.; Richter, M.M.; Ashley, N.T. url  doi
openurl 
  Title Light at night disrupts diel patterns of cytokine gene expression and endocrine profiles in zebra finch (Taeniopygia guttata) Type Journal Article
  Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 9 Issue 1 Pages 15833  
  Keywords Animals  
  Abstract Increased exposure to light pollution perturbs physiological processes through misalignment of daily rhythms at the cellular and tissue levels. Effects of artificial light-at-night (ALAN) on diel properties of immunity are currently unknown. We therefore tested the effects of ALAN on diel patterns of cytokine gene expression, as well as key hormones involved with the regulation of immunity, in zebra finches (Taeniopygia guttata). Circulating melatonin and corticosterone, and mRNA expression levels of pro- (IL-1beta, IL-6) and anti-inflammatory (IL-10) cytokines were measured at six time points across 24-h day in brain (nidopallium, hippocampus, and hypothalamus) and peripheral tissues (liver, spleen, and fat) of zebra finches exposed to 12 h light:12 h darkness (LD), dim light-at-night (DLAN) or constant bright light (LLbright). Melatonin and corticosterone concentrations were significantly rhythmic under LD, but not under LLbright and DLAN. Genes coding for cytokines showed tissue-specific diurnal rhythms under LD and were lost with exposure to LLbright, except IL-6 in hypothalamus and liver. In comparison to LLbright, effects of DLAN were less adverse with persistence of some diurnal rhythms, albeit with significant waveform alterations. These results underscore the circadian regulation of biosynthesis of immune effectors and imply the susceptibility of daily immune and endocrine patterns to ALAN.  
  Address Department of Biology, Western Kentucky University, Bowling Green, KY, USA. noah.ashley@wku.edu  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31676761; PMCID:PMC6825233 Approved no  
  Call Number GFZ @ kyba @ Serial (down) 2766  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: