Records |
Author |
Kelsey, E.C.; Felis, J.J.; Czapanskiy, M.; Pereksta, D.M.; Adams, J. |
Title |
Collision and displacement vulnerability to offshore wind energy infrastructure among marine birds of the Pacific Outer Continental Shelf |
Type |
Journal Article |
Year |
2018 |
Publication |
Journal of Environmental Management |
Abbreviated Journal |
J Environ Manage |
Volume |
227 |
Issue |
|
Pages |
229-247 |
Keywords |
Animals |
Abstract |
Marine birds are vulnerable to collision with and displacement by offshore wind energy infrastructure (OWEI). Here we present the first assessment of marine bird vulnerability to potential OWEI in the California Current System portion of the U.S. Pacific Outer Continental Shelf (POCS). Using population size, demography, life history, flight heights, and avoidance behavior for 62 seabird and 19 marine water bird species that occur in the POCS, we present and apply equations to calculate Population Vulnerability, Collision Vulnerability, and Displacement Vulnerability to OWEI for each species. Species with greatest Population vulnerability included those listed as species of concern (e.g., Least Tern [Sternula antillarum], Marbled Murrelet [Brachyramphus marmoratus], Pink-footed Shearwater [Puffinus creatopus]) and resident year-round species with small population sizes (e.g., Ashy Storm-Petrel [Oceanodroma homochroa], Brandt's Cormorant [Phalacrocorax penicillatus], and Brown Pelican [Pelecanus occidentalis]). Species groups with the greatest Collision Vulnerability included jaegers/skuas, pelicans, terns and gulls that spend significant amounts of time flying at rotor sweep zone height and don't show macro-avoidance behavior (avoidance of entire OWEI area). Species groups with the greatest Displacement Vulnerability show high macro-avoidance behavior and low habitat flexibility and included loons, grebes, sea ducks, and alcids. Using at-sea survey data from the southern POCS, we combined species-specific vulnerabilities described above with at-sea species densities to assess vulnerabilities spatially. Spatial vulnerability densities were greatest in areas with high species densities (e.g., near-shore areas) and locations where species with high vulnerability were found in abundance. Our vulnerability assessment helps understand and minimize potential impacts of OWEI infrastructure on marine birds in the POCS and could inform management decisions. |
Address |
U.S. Geological Survey Western Ecological Research Center, Santa Cruz, CA 95062, USA |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume  |
|
Series Issue |
|
Edition |
|
ISSN |
0301-4797 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:30195148 |
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2122 |
Permanent link to this record |
|
|
|
Author |
Christie, S.; Vincent, A.D.; Li, H.; Frisby, C.L.; Kentish, S.J.; O'Rielly, R.; Wittert, G.A.; Page, A.J. |
Title |
A rotating light cycle promotes weight gain and hepatic lipid storage in mice |
Type |
Journal Article |
Year |
2018 |
Publication |
American Journal of Physiology. Gastrointestinal and Liver Physiology |
Abbreviated Journal |
Am J Physiol Gastrointest Liver Physiol |
Volume |
in press |
Issue |
|
Pages |
|
Keywords |
Animals |
Abstract |
Processes involved in regulation of energy balance and intermediary metabolism are aligned to the light-dark cycle. Shift-work and high fat diet (HFD)-induced obesity disrupt circadian rhythmicity and are associated with increased risk of non-alcoholic fatty liver disease (NAFLD). This study aimed to determine the effect of simulating shift work on hepatic lipid accumulation in lean and HFD-mice. C57BL/6 mice fed a standard laboratory diet (SLD) or HFD for 4wks were further allocated to a normal light (NL)-cycle (lights on:0600-1800hr) or rotating light (RL)-cycle (3-days NL and 4-days reversed (lights on:1800-0600hr) repeated) for 8wks. Tissue was collected every 3hrs beginning at 0600hr. HFD-mice gained more weight than SLD-mice, and RL-mice gained more weight than NL-mice. SLD-NL and HFD-NL mice, but not RL-mice, were more active, had higher respiratory quotients and consumed/expended more energy during the dark phase compared to the light phase. Blood glucose and plasma cholesterol and triglyceride concentrations were elevated in HFD and SLD-RL compared to SLD-NL mice. Hepatic glycogen was elevated in HFD compared to SLD-mice. Hepatic triglycerides were elevated in SLD-RL and HFD-mice compared to SLD-NL. Circadian rhythmicity of hepatic acetyl-CoA carboxylase (ACACA) mRNA was phase shifted in SLD-RL and HFD-NL and lost in HFD-RL mice. Hepatic ACACA protein was reduced in SLD-RL and HFD-mice compared to SLD-NL mice. Hepatic adipose triglyceride lipase was elevated in HFD-NL compared to SLD-NL but lower in RL-mice compared to NL-mice irrespective of diet. -Conclusion: A RL-cycle model of shift-work promotes weight gain and hepatic lipid storage even in lean conditions. |
Address |
Adelaide Medical School, University of Adelaide, Australia |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume  |
|
Series Issue |
|
Edition |
|
ISSN |
0193-1857 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:30188750 |
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2123 |
Permanent link to this record |
|
|
|
Author |
Du, M.; Wang, L.; Zou, S.; Shi, C. |
Title |
Modeling the Census Tract Level Housing Vacancy Rate with the Jilin1-03 Satellite and Other Geospatial Data |
Type |
Journal Article |
Year |
2018 |
Publication |
Remote Sensing |
Abbreviated Journal |
Remote Sensing |
Volume |
10 |
Issue |
12 |
Pages |
1920 |
Keywords |
Remote Sensing |
Abstract |
The vacant house is an essential phenomenon of urban decay and population loss. Exploration of the correlations between housing vacancy and some socio-environmental factors is conducive to understanding the mechanism of urban shrinking and revitalization. In recent years, rapidly developing night-time remote sensing, which has the ability to detect artificial lights, has been widely applied in applications associated with human activities. Current night-time remote sensing studies on housing vacancy rates are limited by the coarse spatial resolution of data. The launch of the Jilin1-03 satellite, which carried a high spatial resolution (HSR) night-time imaging camera, provides a new supportive data source. In this paper, we examined this new high spatial resolution night-time light dataset in housing vacancy rate estimation. Specifically, a stepwise multivariable linear regression model was engaged to estimate the housing vacancy rate at a very fine scale, the census tract level. Three types of variables derived from geospatial data and night-time image represent the physical environment, landuse (LU) structure, and human activities, respectively. The linear regression models were constructed and analyzed. The analysis results show that (1) the HVRs estimating model using the Jilin1-03 satellite and other ancillary geospatial data fits well with the Census statistical data (adjusted R2 = 0.656, predicted R2 = 0.603, RMSE = 0.046) and thus is a valid estimation model; (2) the Jilin1-03 satellite night-time data contributed a 28% (from 0.510 to 0.656) fitting accuracy increase and a 68% (from 0.359 to 0.603) predicting accuracy increase in the estimate model of the housing vacancy rate. Reflecting socio-economic conditions, the luminous intensity of commercial areas derived from the Jilin1-03 satellite is the most influential variable to housing vacancy. Land use structure indirectly and partially demonstrated that the social environment factors in the community have strong correlations with residential vacancy. Moreover, the physical environment factor, which depicts vegetation conditions in the residential areas, is also a significant indicator of housing vacancy. In conclusion, the emergence of HSR night light data opens a new door to future microscopic scale study within cities. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume  |
|
Series Issue |
|
Edition |
|
ISSN |
2072-4292 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2124 |
Permanent link to this record |
|
|
|
Author |
Zhang, G.; Li, L.; Jiang, Y.; Shen, X.; Li, D. |
Title |
On-Orbit Relative Radiometric Calibration of the Night-Time Sensor of the LuoJia1-01 Satellite |
Type |
Journal Article |
Year |
2018 |
Publication |
Sensors (Basel, Switzerland) |
Abbreviated Journal |
Sensors (Basel) |
Volume |
18 |
Issue |
12 |
Pages |
|
Keywords |
Instrumentation; Remote Sensing |
Abstract |
The LuoJia1-01 satellite can acquire high-resolution, high-sensitivity nighttime light data for night remote sensing applications. LuoJia1-01 is equipped with a 4-megapixel CMOS sensor composed of 2048 x 2048 unique detectors that record weak nighttime light on Earth. Owing to minute variations in manufacturing and temporal degradation, each detector's behavior varies when exposed to uniform radiance, resulting in noticeable detector-level errors in the acquired imagery. Radiometric calibration helps to eliminate these detector-level errors. For the nighttime sensor of LuoJia1-01, it is difficult to directly use the nighttime light data to calibrate the detector-level errors, because at night there is no large-area uniform light source. This paper reports an on-orbit radiometric calibration method that uses daytime data to estimate the relative calibration coefficients for each detector in the LuoJia1-01 nighttime sensor, and uses the calibrated data to correct nighttime data. The image sensor has a high dynamic range (HDR) mode, which is optimized for day/night imaging applications. An HDR image can be constructed using low- and high-gain HDR images captured in HDR mode. Hence, a day-to-night radiometric reference transfer model, which uses daytime uniform calibration to calibrate the detector non-uniformity of the nighttime sensor, is herein built for LuoJia1-01. Owing to the lack of calibration equipment on-board LuoJia1-01, the dark current of the nighttime sensor is calibrated by collecting no-light desert images at new moon. The results show that in HDR mode (1) the root mean square of mean for each detector in low-gain (high-gain) images is better than 0.04 (0.07) in digital number (DN) after dark current correction; (2) the DN relationship between low- and high-gain images conforms to the quadratic polynomial mode; (3) streaking metrics are better than 0.2% after relative calibration; and (4) the nighttime sensor has the same relative correction parameters at different exposure times for the same gain parameters. |
Address |
State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China. drli@whu.edu.cn |
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
English |
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume  |
|
Series Issue |
|
Edition |
|
ISSN |
1424-8220 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
PMID:30513817 |
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2125 |
Permanent link to this record |
|
|
|
Author |
Sullivan, J.M.; Flannagan, M.J. |
Title |
The role of ambient light level in fatal crashes: inferences from daylight saving time transitions |
Type |
Journal Article |
Year |
2002 |
Publication |
Accident Analysis & Prevention |
Abbreviated Journal |
Accident Analysis & Prevention |
Volume |
34 |
Issue |
4 |
Pages |
487-498 |
Keywords |
Public Safety; Lighting |
Abstract |
The purpose of this study was to estimate the size of the influence of ambient light level on fatal pedestrian and vehicle crashes in three scenarios. The scenarios were: fatal pedestrian crashes at intersections, fatal pedestrian crashes on dark rural roads, and fatal single-vehicle run-off-road crashes on dark, curved roads. Each scenario's sensitivity to light level was evaluated by comparing the number of fatal crashes across changes to and from daylight saving time, within daily time periods in which an abrupt change in light level occurs relative to official clock time. The analyses included 11 years of fatal crashes in the United States, between 1987 and 1997. Scenarios involving pedestrians were most sensitive to light level, in some cases showing up to seven times more risk at night over daytime. In contrast, single-vehicle run-off-road crashes showed little difference between light and dark time periods, suggesting factors other than light level play the dominant role in these crashes. These results are discussed in the context of the possible safety improvements offered by new developments in adaptive vehicle headlighting. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume  |
|
Series Issue |
|
Edition |
|
ISSN |
0001-4575 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2126 |
Permanent link to this record |