|
Records |
Links |
|
Author |
Gaston, M.S.; Pereyra, L.C.; Vaira, M. |

|
|
Title |
Artificial light at night and captivity induces differential effects on leukocyte profile, body condition, and erythrocyte size of a diurnal toad |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology |
Abbreviated Journal |
J Exp Zool A Ecol Integr Physiol |
|
|
Volume |
in press |
Issue |
|
Pages |
|
|
|
Keywords |
Animals; Amphibians; Toads |
|
|
Abstract |
Light pollution or artificial lighting at night (ALAN) is an emerging threat to biodiversity that can disrupt physiological processes and behaviors. Because ALAN stressful effects are little studied in diurnal amphibian species, we investigated if chronic ALAN exposure affects the leukocyte profile, body condition, and blood cell sizes of a diurnal toad. We hand-captured male toads of Melanophryniscus rubriventris in Angosto de Jaire (Jujuy, Argentina). We prepared blood smears from three groups of toads: “field” (toads processed in the field immediately after capture), “natural light” (toads kept in the laboratory under captivity with natural photoperiod), and “constant light” (toads kept in the laboratory under captivity with constant photoperiod/ALAN). We significantly observed higher neutrophil proportions and neutrophils to lymphocytes ratio in toads under constant light treatment. In addition, we observed significantly better body condition and higher erythrocyte size in field toads compared with captive toads. In summary, ALAN can trigger a leukocyte response to stress in males of the diurnal toad M. rubriventris. In addition, captivity can affect the body condition and erythrocyte size of these toads. |
|
|
Address |
Instituto de Ecorregiones Andinas (INECOA), Universidad Nacional de Jujuy, CONICET, San Salvador de Jujuy, Argentina |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language  |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2471-5638 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:30320969 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2049 |
|
Permanent link to this record |
|
|
|
|
Author |
Ernst, S.; Łabuz, M.; Środa, K.; Kotulski, L. |

|
|
Title |
Graph-Based Spatial Data Processing and Analysis for More Efficient Road Lighting Design |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Sustainability |
Abbreviated Journal |
Sustainability |
|
|
Volume |
10 |
Issue |
11 |
Pages |
3850 |
|
|
Keywords |
Lighting |
|
|
Abstract |
The efficiency and affordability of modern street lighting equipment are improving quickly, but systems used to manage and design lighting installations seem to lag behind. One of their problems is the lack of consistent methods to integrate all relevant data. Tools used to manage lighting infrastructure are not aware of the geographic characteristics of the lit areas, and photometric calculation software requires a lot of manual editing by the designer, who needs to assess the characteristics of roads, define the segments, and assign the lighting classes according to standards. In this paper, we propose a graph-based method to integrate geospatial data from various sources to support the process of data preparation for photometric calculations. The method uses graph transformations to define segments and assign lighting classes. A prototype system was developed to conduct experiments using real-world data. The proposed approach is compared to results obtained by professional designers in a case study; the method was also applied to several European cities to assess its efficiency. The obtained results are much more fine-grained than those yielded by the traditional approach; as a result, the lighting is more adequate, especially when used in conjunction with automated optimisation tools. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language  |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2071-1050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2051 |
|
Permanent link to this record |
|
|
|
|
Author |
Kawasaki, A.; Wisniewski, S.; Healey, B.; Pattyn, N.; Kunz, D.; Basner, M.; Münch, M. |

|
|
Title |
Impact of long-term daylight deprivation on retinal light sensitivity, circadian rhythms and sleep during the Antarctic winter |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Scientific Reports |
Abbreviated Journal |
Sci Rep |
|
|
Volume |
8 |
Issue |
1 |
Pages |
|
|
|
Keywords |
Human Health |
|
|
Abstract |
Long-term daylight deprivation such as during the Antarctic winter has been shown to lead to delayed sleep timing and sleep fragmentation. We aimed at testing whether retinal sensitivity, sleep and circadian rest-activity will change during long-term daylight deprivation on two Antarctic bases (Concordia and Halley VI) in a total of 25 healthy crew members (mean age: 34 ± 11y; 7f). The pupil responses to different light stimuli were used to assess retinal sensitivity changes. Rest-activity cycles were continuously monitored by activity watches. Overall, our data showed increased pupil responses under scotopic (mainly rod-dependent), photopic (mainly L-/M-cone dependent) as well as bright-blue light (mainly melanopsin-dependent) conditions during the time without direct sunlight. Circadian rhythm analysis revealed a significant decay of intra-daily stability, indicating more fragmented rest-activity rhythms during the dark period. Sleep and wake times (as assessed from rest-activity recordings) were significantly delayed after the first month without sunlight (p < 0.05). Our results suggest that during long-term daylight deprivation, retinal sensitivity to blue light increases, whereas circadian rhythm stability decreases and sleep-wake timing is delayed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language  |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2045-2322 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2053 |
|
Permanent link to this record |
|
|
|
|
Author |
Davies, T.W.; Smyth, T. |

|
|
Title |
Why artificial light at night should be a focus for global change research in the 21st century |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Global Change Biology |
Abbreviated Journal |
Glob Chang Biol |
|
|
Volume |
24 |
Issue |
3 |
Pages |
872-882 |
|
|
Keywords |
Commentary; Animals; Plants |
|
|
Abstract |
The environmental impacts of artificial light at night have been a rapidly growing field of global change science in recent years. Yet, light pollution has not achieved parity with other global change phenomena in the level of concern and interest it receives from the scientific community, government and nongovernmental organizations. This is despite the globally widespread, expanding and changing nature of night-time lighting and the immediacy, severity and phylogenetic breath of its impacts. In this opinion piece, we evidence 10 reasons why artificial light at night should be a focus for global change research in the 21st century. Our reasons extend beyond those concerned principally with the environment, to also include impacts on human health, culture and biodiversity conservation more generally. We conclude that the growing use of night-time lighting will continue to raise numerous ecological, human health and cultural issues, but that opportunities exist to mitigate its impacts by combining novel technologies with sound scientific evidence. The potential gains from appropriate management extend far beyond those for the environment, indeed it may play a key role in transitioning towards a more sustainable society. |
|
|
Address |
Plymouth Marine Laboratory, Plymouth, Devon, UK |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language  |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1354-1013 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
PMID:29124824 |
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2054 |
|
Permanent link to this record |
|
|
|
|
Author |
Elvidge, C.D.; Bazilian, M.D.; Zhizhin, M.; Ghosh, T.; Baugh, K.; Hsu, F.-C. |

|
|
Title |
The potential role of natural gas flaring in meeting greenhouse gas mitigation targets |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Energy Strategy Reviews |
Abbreviated Journal |
Energy Strategy Reviews |
|
|
Volume |
20 |
Issue |
|
Pages |
156-162 |
|
|
Keywords |
Remote Sensing |
|
|
Abstract |
In this paper, we compare 2015 satellite-derived natural gas (gas) flaring data with the greenhouse gas reduction targets presented by those countries in their nationally determined contributions (NDC) under the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement. Converting from flaring to utilization is an attractive option for reducing emissions. The analysis rates the potential role of reduction of gas flaring in meeting country-specific NDC targets. The analysis includes three categories of flaring: upstream in oil and gas production areas, downstream at refineries and transport facilities, and industrial (e.g., coal mines, landfills, water treatment plants, etc.). Upstream flaring dominates with 90.6% of all flaring. Global flaring represents less than 2% of the NDC reduction target. However, most gas flaring is concentrated in a limited set of countries, leaving the possibility that flaring reduction could contribute a sizeable portion of the NDC targets for specific countries. States that could fully meet their NDC targets through gas flaring reductions include: Yemen (240%), Algeria (197%), and Iraq (136%). Countries which could meet a substantial portion of their NDC targets with gas flaring reductions include: Gabon (94%), Algeria (48%), Venezuela (47%), Iran (34%), and Sudan (33%). On the other hand, several countries with large flared gas volumes could only meet a small portion of their NDC targets from gas flaring reductions, including the Russian Federation (2.4%) and the USA (0.1%). These findings may be useful in guiding national level efforts to meet NDC greenhouse gas reduction targets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language  |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2211467X |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2055 |
|
Permanent link to this record |