|   | 
Details
   web
Records
Author Russo, D.; Cosentino, F.; Festa, F.; De Benedetta, F.; Pejic, B.; Cerretti, P.; Ancillotto, L.
Title (up) Artificial illumination near rivers may alter bat-insect trophic interactions Type Journal Article
Year 2019 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut
Volume 252 Issue Pt B Pages 1671-1677
Keywords Animals
Abstract Artificial illumination at night represents an increasingly concerning threat to ecosystems worldwide, altering persistence, behaviour, physiology and fitness of many organisms and their mutual interactions, in the long-term affecting ecosystem functioning. Bats are very sensitive to artificial light at night because they are obligate nocturnal and feed on insects which are often also responsive to lights. Here we tested the effects of LED lighting on prey-predator interactions at riverine ecosystems, using bats and their insect prey as models, and compared bat and insect reactions in terms of bat activity and prey insect abundance and diversity, respectively, on artificially lit vs. unlit nights. Artificial light influenced both insect and bat assemblages in taxon-specific directions: insect abundances increased at lit sites, particularly due to an increase in small dipterans near the light source. Composition of insect assemblages also differed significantly between lit and unlit sites. Total bat activity declined at lit sites, but this change was mainly due to the response of the most abundant species, Myotis daubentonii, while opportunistic species showed no reaction or even an opposite pattern (Pipistrellus kuhlii). We show that artificial lighting along rivers may affect trophic interactions between bats and insects, resulting in a profound alteration of community structure and dynamics.
Address Wildlife Research Unit, Dipartimento di Agraria, Universita degli Studi di Napoli Federico II, via Universita, 100, 80055, Portici, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes PMID:31284209 Approved no
Call Number GFZ @ kyba @ Serial 2572
Permanent link to this record
 

 
Author Wilson, R.; Wakefield, A.; Roberts, N.; Jones, G.
Title (up) Artificial light and biting flies: the parallel development of attractive light traps and unattractive domestic lights Type Journal Article
Year 2021 Publication Parasites & Vectors Abbreviated Journal Parasit Vectors
Volume 14 Issue 1 Pages 28
Keywords Animals; Human Health; Diptera; Light attraction; Phototaxis; Spectral wavelength preferences; Vector
Abstract Light trapping is an important tool for monitoring insect populations. This is especially true for biting Diptera, where light traps play a crucial role in disease surveillance by tracking the presence and abundance of vector species. Physiological and behavioural data have been instrumental in identifying factors that influence dipteran phototaxis and have spurred the development of more effective light traps. However, the development of less attractive domestic lights has received comparatively little interest but could be important for reducing interactions between humans and vector insects, with consequences for reducing disease transmission. Here, we discuss how dipteran eyes respond to light and the factors influencing positive phototaxis, and conclude by identifying key areas for further research. In addition, we include a synthesis of attractive and unattractive wavelengths for a number of vector species. A more comprehensive understanding of how Diptera perceive and respond to light would allow for more efficient vector sampling as well as potentially limiting the risk posed by domestic lighting.
Address School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1756-3305 ISBN Medium
Area Expedition Conference
Notes PMID:33413591; PMCID:PMC7789162 Approved no
Call Number GFZ @ kyba @ Serial 3242
Permanent link to this record
 

 
Author Ford, S.; Kidd, P.; Nashand, K.; Rietveld, A.
Title (up) ARTIFICIAL LIGHT AND MOTH BIODIVERSITY: A COMPARISON OF MOTH DIVERSITY ACROSS DIFFERENT HABITATS ON LUNDY TO INVESTIGATE THE EFFECT OF ARTIFICIAL LIGHT Type Journal Article
Year 2020 Publication Journal of the Lundy Field Society Abbreviated Journal
Volume 7 Issue Pages 53-68
Keywords Animals; Lundy; Moths
Abstract Moths perform important roles within ecosystems. Behavioural responses to artificial light disrupt adaptive behaviours, causing population declines. Island populations can assess moth population attracted to artificial light, distinct from urbanisation. Here we present results from day counts of moth larvae and nocturnal Skinner light-traps from Lundy. Findings reveal a significant difference between moth population dynamics and species at differing locations.Overall, numbers of individuals and species caught with the UV-light trap were significantly greater than LED sources.These findings can be applied to potential artificial light changes on Lundy, as well as further changes throughout the United Kingdom
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3132
Permanent link to this record
 

 
Author Forsburg, Z.R.; Guzman, A.; Gabor, C.R.
Title (up) Artificial light at light (ALAN) affects the stress physiology but not the behavior or growth of Rana berlandieri and Bufo valliceps Type Journal Article
Year 2021 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume in press Issue Pages 116775
Keywords Animals
Abstract Artificial light at night (ALAN) alters the natural light dark patterns in ecosystems. ALAN can have a suite of effects on community structure and is a driver of evolutionary processes that influences a range of behavioral and physiological traits. Our understanding of possible effects of ALAN across species amphibians is lacking and research is warranted as ALAN could contribute to stress and declines of amphibian populations, particularly in urban areas. We tested the hypothesis that exposure to constant light or pulsed ALAN would physiologically stress Rio Grande leopard frog (Rana berlandieri) and Gulf Coast toad (Bufo valliceps) tadpoles. We reared tadpoles under constant or pulsed (on and off again) ALAN for 14 days and measured corticosterone release rates over time using a non-invasive water-borne hormone protocol. ALAN treatments did not affect behavior or growth. Tadpoles of both species had higher corticosterone (cort) release rates after 14 days of constant light exposure. Leopard frog tadpoles had lower cort release rates after exposure to pulsed ALAN while toad tadpoles had higher cort release rates. These results suggest that short-term exposure to constant or pulsed light at night may contribute to stress in tadpoles but that each species differentially modulated their cort response to ALAN exposure and a subsequent stressor. This flexibility in the upregulation and downregulation of hypothalamic-pituitary-interrenal axis response may indicate an alternative mechanism for diminishing the deleterious effects of chronic stress. Nonetheless, ALAN should be considered in management and conservation plans for amphibians.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3420
Permanent link to this record
 

 
Author Vowles, A.S.; Kemp, P.S.
Title (up) Artificial light at night (ALAN) affects the downstream movement behaviour of the critically endangered European eel, Anguilla anguilla Type Journal Article
Year 2021 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume in press Issue Pages
Keywords Animals
Abstract Artificial light at night (ALAN) is considered one of the most pervasive forms of environmental pollution. It is an emerging threat to freshwater biodiversity and can influence ecologically important behaviours of fish. The European eel (Anguilla anguilla) is a critically endangered catadromous species that migrates downstream to the ocean to spawn in the Sargasso Sea. Given the pervasive nature of ALAN, many eel will navigate through artificially lit routes during their seaward migration, and although considered negatively phototactic, their response has yet to be quantified. We investigated the response of downstream moving European eel to simulated ALAN using a Light Emitting Diode unit in an experimental flume. We presented two routes of passage under: (1) a dark control (both channels unlit), (2) low ALAN (treatment channel lit to ca. 5 lx), or (3) high ALAN (treatment channel lit to ca. 20 lx). Eel were: (i) more likely to reject an illuminated route when exposed to high levels of ALAN; (ii) less likely to select the illuminated channel when given a choice; and (iii) passed downstream more rapidly when the illuminated route was selected. This study quantified the response of the critically endangered European eel to ALAN under an experimental setting, providing the foundations for future field based research to validate these findings, and offering insight on the ecological impacts of this major environmental pollutant and driver of global change.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3313
Permanent link to this record