|   | 
Details
   web
Records
Author Singhal, R. K.; Chauhan, J.; Jatav, H. S.; Rajput, V. D.; Singh, G. S.; Bose, B.
Title (up) Artificial night light alters ecosystem services provided by biotic components. Type Journal Article
Year 2021 Publication BIOLOGIA FUTURA Abbreviated Journal
Volume Issue Pages in press
Keywords Review; Ecology
Abstract The global catastrophe of natural biodiversity and ecosystem services are expedited with the growing human population. Repercussions of artificial light at night ALAN are much wider, as it varies from unicellular to higher organism. Subsequently, hastened pollution and over exploitation of natural resources accelerate the expeditious transformation of climatic phenomenon and further cause global biodiversity losses. Moreover, it has a crucial role in global biodiversity and ecosystem services losses via influencing the ecosystem biodiversity by modulating abundance, number and aggregation at every levels as from individual to biome levels. Along with these affects, it disturbs the population, genetics and landscape structures by interfering inter- and intra-species interactions and landscape formation processes. Furthermore, alterations in normal light/dark (diurnal) signalling disrupt the stable physiological, biochemical, and molecular processes and modulate the regulating, cultural and provisioning ecosystem services and ultimately disorganize the stable ecosystem structure and functions. Moreover, ALAN reshapes the abiotic component of the ecosystem, and as a key component of global warming via producing greenhouse gases via emitting light. By taking together the above facts, this review highlights the impact of ALAN on the ecosystem and its living and non-living components, emphasizing to the terrestrial and aquatic ecosystem. Further, we summarize the means of minimizing strategies of ALAN in the environment, which are very crucial to reduce the further spread of night light contamination in the environment and can be useful to minimize the drastic impacts on the ecosystem.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number UP @ altintas1 @ Serial 3323
Permanent link to this record
 

 
Author Ditmer, M.A.; Iannarilli, F.; Tri, A.N.; Garshelis, D.L.; Carter, N.H.
Title (up) Artificial night light helps account for observer bias in citizen science monitoring of an expanding large mammal population Type Journal Article
Year 2021 Publication The Journal of Animal Ecology Abbreviated Journal J Anim Ecol
Volume 90 Issue 2 Pages 330-342
Keywords Animals; Remote sensing; bears; human-wildlife interactions; occupancy model; range expansion; spatial bias; species monitoring
Abstract The integration of citizen scientists into ecological research is transforming how, where, and when data are collected, and expanding the potential scales of ecological studies. Citizen-science projects can provide numerous benefits for participants while educating and connecting professionals with lay audiences, potentially increasing the acceptance of conservation and management actions. However, for all the benefits, collection of citizen-science data is often biased towards areas that are easily accessible (e.g. developments and roadways), and thus data are usually affected by issues typical of opportunistic surveys (e.g. uneven sampling effort). These areas are usually illuminated by artificial light at night (ALAN), a dynamic sensory stimulus that alters the perceptual world for both humans and wildlife. Our goal was to test whether satellite-based measures of ALAN could improve our understanding of the detection process of citizen-scientist-reported sightings of a large mammal. We collected observations of American black bears Ursus americanus (n = 1,315) outside their primary range in Minnesota, USA, as part of a study to gauge population expansion. Participants from the public provided sighting locations of bears on a website. We used an occupancy modelling framework to determine how well ALAN accounted for observer metrics compared to other commonly used metrics (e.g. housing density). Citizen scientists reported 17% of bear sightings were under artificially lit conditions and monthly ALAN estimates did the best job accounting for spatial bias in detection of all observations, based on AIC values and effect sizes ( beta ^ = 0.81, 0.71-0.90 95% CI). Bear detection increased with elevated illuminance; relative abundance was positively associated with natural cover, proximity to primary bear range and lower road density. Although the highest counts of bear sightings occurred in the highly illuminated suburbs of the Minneapolis-St. Paul metropolitan region, we estimated substantially higher bear abundance in another region with plentiful natural cover and low ALAN (up to ~375% increased predicted relative abundance) where observations were sparse. We demonstrate the importance of considering ALAN radiance when analysing citizen-scientist-collected data, and we highlight the ways that ALAN data provide a dynamic snapshot of human activity.
Address School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-8790 ISBN Medium
Area Expedition Conference
Notes PMID:32895962 Approved no
Call Number GFZ @ kyba @ Serial 3349
Permanent link to this record
 

 
Author Amavilah, V.H.
Title (up) Artificial nighttime lights and the “real” well-being of nations : “Measuring economic growth from outer space” and welfare from right here on Earth Type Journal Article
Year 2018 Publication Journal of Economics and Political Economy Abbreviated Journal
Volume 5 Issue 2 Pages 209-218
Keywords Economics; Remote Sensing
Abstract GDP remains too much of an imprecise measure of the standard of living. There

is a need for either substitutes or complements. Nighttime lights are a reasonable indicator of the extent, scale, and intensity of socio-economic activities, but a poor measure of national welfare. However, if nighttime lights are understood to constitute externalities, then their effects can be used to adjust measured growth for welfare. From that angle, nighttime lights appear to exert sub-optimal positive externalities in developing countries, and supra-optimal negative externality in developed countries. This means that even if we assume equal growth rates in developing and developed countries, welfare is enhanced by increasing nighttime lights in developing countries and reduced by increasing nighttime lights in developed countries.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number NC @ ehyde3 @ Serial 2099
Permanent link to this record
 

 
Author Ohayon, M.M.; Milesi, C.
Title (up) Artificial Outdoor Nighttime Lights Associate with Altered Sleep Behavior in the American General Population Type Journal Article
Year 2016 Publication Sleep Abbreviated Journal Sleep
Volume 39 Issue 6 Pages 1311-1320
Keywords Human Health; Remote Sensing; Sleep
Abstract STUDY OBJECTIVES: Our study aims to explore the associations between outdoor nighttime lights (ONL) and sleep patterns in the human population. METHODS: Cross-sectional telephone study of a representative sample of the general US population age 18 y or older. 19,136 noninstitutionalized individuals (participation rate: 83.2%) were interviewed by telephone. The Sleep-EVAL expert system administered questions on life and sleeping habits; health; sleep, mental and organic disorders (Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision; International Classification of Sleep Disorders, Second Edition; International Classification of Diseases, 10(th) Edition). Individuals were geolocated by longitude and latitude. Outdoor nighttime light measurements were obtained from the Defense Meteorological Satellite Program's Operational Linescan System (DMSP/OLS), with nighttime passes taking place between 19:30 and 22:30 local time. Light data were correlated precisely to the geolocation of each participant of the general population sample. RESULTS: Living in areas with greater ONL was associated with delayed bedtime (P < 0.0001) and wake up time (P < 0.0001), shorter sleep duration (P < 0.01), and increased daytime sleepiness (P < 0.0001). Living in areas with greater ONL also increased the dissatisfaction with sleep quantity and quality (P < 0.0001) and the likelihood of having a diagnostic profile congruent with a circadian rhythm disorder (P < 0.0001). CONCLUSIONS: Although they improve the overall safety of people and traffic, nighttime lights in our streets and cities are clearly linked with modifications in human sleep behaviors and also impinge on the daytime functioning of individuals living in areas with greater ONL.
Address NASA Ames Research Center, Moffett Field, CA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0161-8105 ISBN Medium
Area Expedition Conference
Notes PMID:27091523; PMCID:PMC4863221 Approved no
Call Number GFZ @ kyba @ Serial 2551
Permanent link to this record
 

 
Author Torres, D.; Tidau, S.; Jenkins, S.; Davies, T.
Title (up) Artificial skyglow disrupts celestial migration at night Type Journal Article
Year 2020 Publication Current Biology Abbreviated Journal Current Biology
Volume 30 Issue 12 Pages R696-R697
Keywords Animals; Skyglow
Abstract Our understanding of the ecological impacts of direct outdoor lighting has improved substantially over the last decade [1, 2, 3]. In contrast, the impacts of artificial skyglow — that is, artificial light that is scattered in the atmosphere and reflected back to the ground — have received comparatively little attention [4]. Artificial skyglow extends the influence of direct lighting out to hundreds of kilometres from direct sources (for example street lights). It is the most geographically widespread form of light pollution, affecting 23% of the world’s land surface (between 75°N and 60°S) [5]. Artificial skyglow illuminances are two orders of magnitude lower (0.2–0.5 lx) than light pollution from direct artificial light (typically 10–100 lx), but greater than moonlight (0.1–0.3 lx) and light from the Milky Way (0.001 lx). Numerous organisms from across the animal kingdom orient themselves during migrations using lunar compasses [6, 7, 8, 9], and are vulnerable to artificial skyglow across large (10–100 km) spatial scales. Here we demonstrate that artificial skyglow disrupts nightly migrations by the amphipod Talitrus saltator (commonly known as the sandhopper), which uses the sky position of the moon [9, 10] as a guide.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3012
Permanent link to this record