toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Roberts, T.S. url  doi
openurl 
  Title (up) A Lapland Longspur Tragedy: Being an Account of a Great Destruction of These Birds during a Storm in Southwestern Minnesota and Northwestern Iowa in March, 1904 Type Journal Article
  Year 1907 Publication The Auk Abbreviated Journal The Auk  
  Volume 24 Issue 4 Pages 369-377  
  Keywords Animals  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0004-8038 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2417  
Permanent link to this record
 

 
Author Zhang, D.; Jones, R.R.; Powell-Wiley, T.M.; Jia, P.; James, P.; Xiao, Q. url  doi
openurl 
  Title (up) A large prospective investigation of outdoor light at night and obesity in the NIH-AARP Diet and Health Study Type Journal Article
  Year 2020 Publication Environmental Health : a Global Access Science Source Abbreviated Journal Environ Health  
  Volume 19 Issue 1 Pages 74  
  Keywords Human Health; Remote Sensing; Circadian rhythms; Light at night; Light pollution; Obesity  
  Abstract BACKGROUND: Research has suggested that artificial light at night (LAN) may disrupt circadian rhythms, sleep, and contribute to the development of obesity. However, almost all previous studies are cross-sectional, thus, there is a need for prospective investigations of the association between LAN and obesity risk. The goal of our current study was to examine the association between baseline LAN and the development of obesity over follow-up in a large cohort of American adults. METHODS: The study included a sample of 239,781 men and women (aged 50-71) from the NIH-AARP Diet and Health Study who were not obese at baseline (1995-1996). We used multiple logistic regression to examine whether LAN at baseline was associated with the odds of developing obesity at follow-up (2004-2006). Outdoor LAN exposure was estimated from satellite imagery and obesity was measured based on self-reported weight and height. RESULTS: We found that higher outdoor LAN at baseline was associated with higher odds of developing obesity over 10 years. Compared with the lowest quintile of LAN, the highest quintile was associated with 12% and 19% higher odds of developing obesity at follow-up in men (OR (95% CI) = 1.12 (1.00, 1.250)) and women (1.19 (1.04, 1.36)), respectively. CONCLUSIONS: Our findings suggest that high LAN exposure could predict a higher risk of developing obesity in middle-to-older aged American adults.  
  Address Department of Epidemiology, Human Genetics and Environmental Sciences, The University of Texas Health Science Center at Houston School of Public Health, Houston, TX, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1476-069X ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32611430; PMCID:PMC7329409 Approved no  
  Call Number GFZ @ kyba @ Serial 3029  
Permanent link to this record
 

 
Author Falchi, F.; Bará, S. url  doi
openurl 
  Title (up) A linear systems approach to protect the night sky: implications for current and future regulations Type Journal Article
  Year 2020 Publication Royal Society Open Science Abbreviated Journal R. Soc. open sci.  
  Volume 7 Issue 12 Pages 201501  
  Keywords Skyglow; Regulation; Lighting  
  Abstract The persistent increase of artificial light emissions is causing a progressive brightening of the night sky in most regions of the world. This process is a threat for the long-term sustainability of the scientific and educational activity of ground-based astronomical observatories operating in the optical range. Huge investments in building, scientific and technical workforce, equipment and maintenance can be at risk if the increasing light pollution levels hinder the capability of carrying out the top-level scientific observations for which these key scientific infrastructures were built. Light pollution has other negative consequences, as e.g. biodiversity endangering and the loss of the starry sky for recreational, touristic and preservation of cultural heritage. The traditional light pollution mitigation approach is based on imposing conditions on the photometry of individual sources, but the aggregated effects of all sources in the territory surrounding the observatories are seldom addressed in the regulations. We propose that this approach shall be complemented with a top-down, ambient artificial skyglow immission limits strategy, whereby clear limits are established to the admissible deterioration of the night sky above the observatories. We describe the general form of the indicators that can be employed to this end, and develop linear models relating their values to the artificial emissions across the territory. This approach can be easily applied to other protection needs, like e.g. to protect nocturnal ecosystems, and it is expected to be useful for making informed decisions on public lighting, in the context of wider spatial planning projects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2054-5703 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 3260  
Permanent link to this record
 

 
Author Min, M.; Zheng, J.; Zhang, P.; Hu, X.; Chen, L.; Li, X.; Huang, Y.; Zhu, L. url  doi
openurl 
  Title (up) A low-light radiative transfer model for satellite observations of moonlight and earth surface light at night Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages 106954  
  Keywords Remote Sensing; Instrumentation  
  Abstract Lunar sun-reflected light can be effectively measured through a low-light band or a day/night band (DNB) implemented on space-based optical sensors. Based on moonlight, nocturnal observations for artificial light sources at night can be achieved. However, to date, an open-sourced and mature Low-Light Radiative Transfer Model (LLRTM) for the further understanding of the radiative transfer problem at night is still unavailable. Therefore, this study develops a new LLRTM at night with the correction of the lunar and active surface light sources. First, the radiative transfer equations with an active surface light source are derived for the calculation based on the lunar spectral irradiance (LSI) model. The simulation from this new LLRTM shows a minimal bias when compared with the discrete ordinates radiative transfer (DISORT) model. The simulated results of radiance and reflectance at the top of the atmosphere (TOA) also show that the surface light source has a remarkable impact on the radiative transfer process. In contrast, the change in the lunar phase angle has minimal influence. Also, comparing with space-based DNB radiance observations, LLRTM shows the potential to simulate space-based low-light imager observations under an effective surface light source condition during the night.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2850  
Permanent link to this record
 

 
Author Sun, L.; Tang, L.; Shao, G.; Qiu, Q.; Lan, T.; Shao, J. url  doi
openurl 
  Title (up) A Machine Learning-Based Classification System for Urban Built-Up Areas Using Multiple Classifiers and Data Sources Type Journal Article
  Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing  
  Volume 12 Issue 1 Pages 91  
  Keywords Remote Sensing  
  Abstract Information about urban built-up areas is important for urban planning and management. However, obtaining accurate information about urban built-up areas is a challenge. This study developed a general-purpose built-up area intelligent classification (BAIC) system that supports various types of data and classifiers. All of the steps in the BAIC were implemented using Python modules including Numpy, Pandas, matplotlib, and scikit-learn. We used the BAIC to conduct a classification experiment that involved seven types of input data; namely, Point of Interest (POI), Road Network (RN), nighttime light (NTL), a combination of POI and RN data (POIRN), a combination of POI and NTL data (POINTL), a combination of RN and NTL data (RNNTL), and a combination of POI, RN, and NTL data (POIRNNTL), and five classifiers, namely, Logistic Regression (LR), Decision Tree (DT), Random Forests (RF), Gradient Boosted Decision Trees (GBDT), and AdaBoost. The results show the following: (1) among the 35 combinations of the five classifiers and seven types of input data, the overall accuracy (OA) ranged from 76 to 89%, F1 values ranged from 0.73 to 0.86, and the area under the receiver operating characteristic (ROC) curve (AUC) ranged from 0.83 to 0.95. The largest F1 value and OA were obtained using the POIRNNTL data and AdaBoost, while the largest AUC was obtained using POIRNNTL and POINTL data against AdaBoost, LR, and RF; and (2) the advantages of the BAIC include its support for multi-source input data, its objective accuracy assessment, and its robust classifiers. The BAIC can quickly and efficiently realize the automatic classification of urban built-up areas at a reasonably low cost and can be readily applied to other urban areas in the world where any kind of POI, RN, or NTL data coverage is available. The results of this study are expected to provide timely and effective reference information for urban planning and urban management departments, and could also potentially be used to develop large-scale maps of urban built-up areas in the future.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2072-4292 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2800  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: