toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Guk, E.; Levin, N. url  doi
openurl 
  Title (up) Analyzing spatial variability in night-time lights using a high spatial resolution color Jilin-1 image – Jerusalem as a case study Type Journal Article
  Year 2020 Publication ISPRS Journal of Photogrammetry and Remote Sensing Abbreviated Journal ISPRS Journal of Photogrammetry and Remote Sensing  
  Volume 163 Issue Pages 121-136  
  Keywords Remote Sensing  
  Abstract In recent decades, there has been an increase in artificial lighting in the world due to urbanization and the revolution of LED lighting. Artificial lighting is an indicator of human activity, but can adversely affect natural ecosystems and people due to negative impacts of light pollution. Space-borne and airborne imagery as well as ground-based measurements enable to measure the intensity and spectra of artificial lights. One of the challenges in remote sensing of night-time lights is how to ground truth night-time imagery acquired by satellites, and how much do space-borne measurements represent the brightness as perceived by organisms. Most of the studies on night-time lights to-date were done using panchromatic sensors at large spatial extents, which did not allow to examine intra-urban variation in night light intensity and spectra. The aim of this study was to test the capability of the new Chinese satellite Jilin-1, which is the first commercial satellite to offer multispectral night-light imagery at a spatial resolution below 1 m, to characterize the night-time properties of urban areas. We examined the correspondence between light intensities as measured from different sensors at different spatial resolutions: two Jilin-1 images of the Jerusalem metropolitan area (0.89 m), VIIRS/DNB (500 m), Loujia-1 (130 m), unmanned aerial vehicle (UAV) color image (0.05 m) and hemispherical color photographs taken by a calibrated ground DSLR (digital single-lens reflex camera). In all the comparisons between different remote sensing tools, as the spatial resolution coarsened, the Pearson correlation coefficient increased, reaching > 0.5 (after resampling to 100 m). Stronger correlations were found for the red band, and weaker correlations were found for the blue band, probably due to atmospheric scattering. By identifying specific objects such as buildings and lightings, we found good correspondence () between Jilin-1 and the ground-based measurements of night-time brightness. We further examined the variability of night lights within different land use types and within different ethnic/religion composition of statistical areas. We found that residential areas of Orthodox Jews were characterized with the highest brightness at night compared with residential areas of Arabs in the West Bank that had the lowest brightness. At the statistical zone level (n = 299), more than 50% of the variability in night-time brightness, was explained by land cover properties (NDVI), infrastructure (roads and built volume) and the ethnic/religious composition. In addition, we found that the spectral ratio index which was based on the red and green bands, enabled to better distinguish between land use classes, than the spectral ratio index which was based on the green and blue bands. The availability of night-time multi-spectral imagery at fine spatial resolution now enables to study urban land-use and spatial inequality, and to better understand the factors explaining night-time brightness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0924-2716 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2857  
Permanent link to this record
 

 
Author Li, X.; Duarte, F.; Ratti, C. url  doi
openurl 
  Title (up) Analyzing the obstruction effects of obstacles on light pollution caused by street lighting system in Cambridge, Massachusetts Type Journal Article
  Year 2019 Publication Environment and Planning B: Urban Analytics and City Science Abbreviated Journal Environment and Planning B: Urban Analytics and City Science  
  Volume in press Issue Pages 2399808319861645  
  Keywords Skyglow; Lighting; upward light  
  Abstract Artificial light has transformed urban life, enhancing visibility, aesthetics, and increasing safety in public areas. However, too much unwanted artificial light leads to light pollution, which has a negative effect on public health and urban ecosystems, as well as on the aesthetic and cultural meanings of the night sky. Some of the factors interfering with the estimation of light pollution in cities are urban features, such as the presence of trees, road dimensions, and the physical characteristics of buildings. In this study, we proposed a simplified model for unwanted upward light coming from street luminaires based on a building height model and the publicly accessible Google Street View images. We simulated and analyzed the obstruction effects of different street features on the light pollution caused by the street lighting system in Cambridge, Massachusetts. By providing quantitative information about the connections between the streetscape features and the amount of unwanted upward artificial light, this study provides reference values to inform policies aimed at curbing light pollution.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2399-8083 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2587  
Permanent link to this record
 

 
Author Kumar, P.; Rehman, S.; Sajjad, H.; Tripathy, B.R.; Rani, M.; Singh, S. url  doi
openurl 
  Title (up) Analyzing trend in artificial light pollution pattern in India using NTL sensor's data Type Journal Article
  Year 2019 Publication Urban Climate Abbreviated Journal Urban Climate  
  Volume 27 Issue Pages 272-283  
  Keywords Remote Sensing; India; DMSP; DMSP-OLS  
  Abstract Exponential growth of population and the resultant rapid rate of urbanization and industrialization in India have significantly transformed its nighttime light environment. The study makes an attempt to analyze the spatio-temporal pattern of light pollution and its causative actors in a fast-developing economy. We utilized nighttime light data from 1993 to 2013 and calibrated through linear regression. Ten patches of major changes from the whole study area were selected to assess the intensity of light pollution at regional scale. Spatial analysis of light pollution in selected patches revealed that New Delhi, Telangana, Maharashtra, Karnataka and Uttar Pradesh experienced increase in very high light pollution intensity. West Bengal, Gujarat and Tamil Nadu witnessed a remarkable change from low to high light pollution. Urban expansion, industrial development and air pollution are main drivers for increasing light pollution. Strong correlation was found between light pollution and digital numbers (DN) values at regional scale. The maps generated through Defense Meteorological Satellite Program Operational Line Scanner Night Time Light data not only helped in assessing the intensity of light pollution but also identified its causative actors.The results of study can effectively be utilized for setting priorities of environmental protection in different geographical regions at various scales.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2212-0955 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2144  
Permanent link to this record
 

 
Author Tong, K.P.; Kyba, C.C.M.; Heygster, G.; Kuechly, H.U.; Notholt, J.; Kollth, Z. url  doi
openurl 
  Title (up) Angular distribution of upwelling artificial light in Europe as observed by Suomi–NPP satellite Type Journal Article
  Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume in press Issue Pages in press  
  Keywords Remote Sensing; Skyglow  
  Abstract Measuring the angular distribution of upwelling artificial light is important for modeling light pollution, because the direction of emission affects how light propagates in the atmosphere. We characterize the angular distributions of upwelling artificial light for Europe and northern Africa in 2018, based on night time radiance data for clear nights without twilight and moonlight from the VIIRS–DNB sensor on board the Suomi NPP satellite. We find that in general, suburban areas of major cities emit more light at larger zenith angles, whereas the opposite can be seen at the city centers, where the highest radiance is directed upward. The mean numbers of overflights for the year is 83, meaning that there are on average approximately seven suitable overflights per month. Future analysis may consider using moonlight models to compensate for the retrieval of moonlit scenes and analyzing data from different years in order to expand the amount of available data. As the VIIRS–DNB sensor on board the NOAA–20 satellite (launched 2017) has almost the same design, this method can also be extended to the data taken by NOAA–20.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2880  
Permanent link to this record
 

 
Author Li, X.; Ma, R.; Zhang, Q.; Li, D.; Liu, S.; He, T.; Zhao, L. url  doi
openurl 
  Title (up) Anisotropic characteristic of artificial light at night – Systematic investigation with VIIRS DNB multi-temporal observations Type Journal Article
  Year 2019 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment  
  Volume 233 Issue Pages 111357  
  Keywords Remote Sensing; Instrumentation  
  Abstract The released VIIRS DNB nightly images, also known as VIIRS DNB daily nighttime images, provide rich information for time series analysis of global socioeconomic dynamics. Anisotropic characteristic is a possible factor that influences the VIIRS DNB radiance at night and its time series analysis. This study aims to investigate the relationship between viewing angles and VIIRS DNB radiance of Suomi NPP satellite in urban areas. First, twenty-nine points were selected globally to explore the angle variation of Suomi NPP satellite views at night. We found that the variation of the satellite viewing zenith angle (VZA) is consistent (e.g. between 0° and 70°) since the range of VZA is fixed depending on the sensor design, and the range of viewing azimuth angle (VAA) increases with the increase of latitude. Second, thirty points in cities of Beijing, Houston, Los Angeles, Moscow, Quito and Sydney, were used to investigate the angle-radiance relationship. We proposed a zenith-radiance quadratic (ZRQ) model and a zenith-azimuth-radiance binary quadratic (ZARBQ) model to quantify the relationship between satellite viewing angles and artificial light radiance, which has been corrected by removing the moonlight and atmospheric impact from VIIRS DNB radiance products. For all the thirty points, the ZRQ and ZARBQ analysis have averaged R2 of 0.50 and 0.53, respectively, which indicates that the viewing angles are important factors influencing the variation of the artificial light radiance, but extending zenith to zenith-azimuth does not much better explain the variation of the observed artificial light. Importantly, based on the data analysis, we can make the hypothesis that building height may affect the relationship between VZA and artificial light, and cold and hot spot effects are clearly found in tall building areas. These findings are potentially useful to reconstruct more stable time series VIIRS DNB images for socioeconomic applications by removing the angular effects.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0034-4257 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2621  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: