|   | 
Details
   web
Records
Author Treanor, P. J.
Title (up) A simple propagation law for artificial night-sky illumination Type Journal Article
Year 1973 Publication The Observatory Abbreviated Journal
Volume 93 Issue Pages 117-120
Keywords Skyglow
Abstract The problem of locating new large astronomical observatories in sites which have a suitably dark night sky (artificial excess of the order of omi) is becoming increasingly difficult in Europe and the United States, on account of extensive urban development, the high luminous efficiency of modern discharge lighting, and the scattering of light in an atmosphere contaminated by aerosols. To investigate the artificial illumination of the sky over large regions on the basis of necessarily limited observations, one needs an expression for the zenith brightness produced by towns of known site and distance.

The exact derivation of such a law is exceedingly complex, involving the computation of the radiation transfer in an atmosphere with absorption, multiple scattering, and complicated physical and geometrical parameters. Notwithstanding these difficulties, it is possible to obtain a useful physical insight into the general form of this law by considering a very simplified model, consisting of a homogeneous atmosphere, in which vertical heights are small in relation to the horizontal distances between town and observatory, and which the scattering is limited to a cone of small angle whose axis lies in the direction of the incident beam. The limited scale height and optical thickness of the real atmosphere, and the forward-scattering characteristics of aerosols lend some plausibility to these simplifications.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2633
Permanent link to this record
 

 
Author Cao, X.; Hu, Y.; Zhu, X.; Shi, F.; Zhuo, L.; Chen, J.
Title (up) A simple self-adjusting model for correcting the blooming effects in DMSP-OLS nighttime light images Type Journal Article
Year 2019 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 224 Issue Pages 401-411
Keywords Remote Sensing
Abstract Night-time light (NTL) data from the Defense Meteorological Satellite Program (DMSP) Operation Linescan System (OLS) provide important observations of human activities; however, DMSP-OLS NTL data suffer from problems such as saturation and blooming. This research developed a self-adjusting model (SEAM) to correct blooming effects in DMSP-OLS NTL data based on a spatial response function and without using any ancillary data. By assuming that the pixels adjacent to the background contain no lights (i.e., pseudo light pixels, PLPs), the blooming effect intensity, a parameter in the SEAM model, can be estimated by pixel-based regression using PLPs and their neighboring light sources. SEAM was applied to all of China, and its performance was assessed for twelve cities with different population sizes. The results show that SEAM can largely reduce the blooming effect in the original DMSP-OLS dataset and enhance its quality. The images after blooming effect correction have higher spatial similarity with Suomi National Polar-orbiting Partnership Visible Infrared Imaging Radiometer Suite (VIIRS) images and higher spatial variability than the original DMSP-OLS data. We also found that the average effective blooming distance is approximately 3.5 km in China, which may be amplified if the city is surrounded by water surfaces, and that the blooming effect intensity is positively correlated to atmospheric quality. The effectiveness of the proposed model will improve the capacity of DMSP-OLS images for mapping the urban extent and modeling socioeconomic parameters.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2239
Permanent link to this record
 

 
Author Li, P.; Zhang, H.; Wang, X.; Song, X.; Shibasaki, R.
Title (up) A spatial finer electric load estimation method based on night-light satellite image Type Journal Article
Year 2020 Publication Energy Abbreviated Journal Energy
Volume 209 Issue Pages 118475
Keywords Remote Sensing
Abstract As a fundamental parameter of the electric grid, obtaining spatial electric load distribution is the premise and basis for numerous studies. As a public, world-wide, and spatialized dataset, NPP/VIIRS night-light satellite image has been long used for socio-economic information estimation, including electric consumption, while little attention has been given to the electric load estimation. Additionally, most of the previous studies were performed at a large spatial scale, which could not reflect the electric information inner a city. Therefore, this paper proposes a method to estimate electric load density at a township-level spatial scale based on NPP/VIIRS night-light satellite data. Firstly, we reveal the different fitting relationships between EC (Electric Consumption)-NLS (Night-Light Sum) and EL (Electric Load)-NLI (Night-Light Intensity). Then, we validated the spatial-scale’s influence on the estimation accuracy by experiment via generating a series of simulated datasets. After working out the super-resolution night-light image with the SRCNN (Super-Resolution Convolutional Neural Network) algorithm, we established a finer spatial estimation model. By taking a monthly data of Shanghai as a case study, we validate the model we established. The result shows that estimating electric load at township-level based on night-light satellite data is feasible, and the SRCNN algorithm can improve the performance.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0360-5442 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3068
Permanent link to this record
 

 
Author Li, X; Zhou, Y.
Title (up) A Stepwise Calibration of Global DMSP/OLS Stable Nighttime Light Data (1992–2013) Type Journal Article
Year 2017 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 9 Issue 6 Pages 637
Keywords Remote Sensing
Abstract The Defense Meteorological Satellite Program (DMSP)/Operational Linescan System (OLS) stable nighttime light (NTL) data provide a wide range of potentials for studying global and regional dynamics, such as urban sprawl and electricity consumption. However, due to the lack of on-board calibration, it requires inter-annual calibration for these practical applications. In this study, we proposed a stepwise calibration approach to generate a temporally consistent NTL time series from 1992 to 2013. First, the temporal inconsistencies in the original NTL time series were identified. Then, a stepwise calibration scheme was developed to systematically improve the over- and under- estimation of NTL images derived from particular satellites and years, by making full use of the temporally neighbored image as a reference for calibration. After the stepwise calibration, the raw NTL series were improved with a temporally more consistent trend. Meanwhile, the magnitude of the global sum of NTL is maximally maintained in our results, as compared to the raw data, which outperforms previous conventional calibration approaches. The normalized difference index indicates that our approach can achieve a good agreement between two satellites in the same year. In addition, the analysis between the calibrated NTL time series and other socioeconomic indicators (e.g., gross domestic product and electricity consumption) confirms the good performance of the proposed stepwise calibration. The calibrated NTL time series can serve as useful inputs for NTL related dynamic studies, such as global urban extent change and energy consumption.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2492
Permanent link to this record
 

 
Author Chang, S.; Wang, J.; Zhang, F.; Niu, L.; Wang, Y.
Title (up) A study of the impacts of urban expansion on vegetation primary productivity levels in the Jing-Jin-Ji region, based on nighttime light data Type Journal Article
Year 2020 Publication Journal of Cleaner Production Abbreviated Journal Journal of Cleaner Production
Volume 263 Issue Pages 121490
Keywords Remote Sensing
Abstract Rapid urbanization has generated enormous pressure on natural resources. This study illustrates urban expansion in the Jing-Jin-Ji region and its influence on vegetation primary productivity. Tempo-spatial correlations between a vegetation index and nighttime light intensity are discussed to assess the urbanization effect quantitatively. The results show that: (1) From 1998 to 2018, urban areas gradually expanded outward from their original conglomerations. (2) In the past 20 years, Beijing and Tianjin have developed in different ways. The surrounding satellite cities have mostly developed concentrically, although some cities in Hebei province have developed more linearly. (3) The average primary productivity of the study area in 1998, 2003, 2008, 2013, and 2018 was generally lower than that of non-urban regions of the same year. (4) During the period from 1998 to 2018, the primary productivity of vegetation in the urban built-up areas increased, and the condition of the plant improved.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-6526 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2925
Permanent link to this record