|   | 
Details
   web
Records
Author Dananay, K.L.; Benard, M.F.
Title (up) Artificial light at night decreases metamorphic duration and juvenile growth in a widespread amphibian Type Journal Article
Year 2018 Publication Proceedings of the Royal Society B: Biological Sciences Abbreviated Journal Proc. R. Soc. B
Volume 285 Issue 1882 Pages 20180367
Keywords Animals
Abstract Artificial light at night (ALAN) affects over 20% of the earth's surface and is estimated to increase 6% per year. Most studies of ALAN have focused on a single mechanism or life stage. We tested for indirect and direct ALAN effects that occurred by altering American toads' (Anaxyrus americanus) ecological interactions or by altering toad development and growth, respectively. We conducted an experiment over two life stages using outdoor mesocosms and indoor terraria. In the first phase, the presence of ALAN reduced metamorphic duration and periphyton biomass. The effects of ALAN appeared to be mediated through direct effects on toad development, and we found no evidence for indirect effects of ALAN acting through altered ecological interactions or colonization. In the second phase, post-metamorphic toad growth was reduced by 15% in the ALAN treatment. Juvenile-stage ALAN also affected toad activity: in natural light, toads retreated into leaf litter at night whereas ALAN toads did not change behaviour. Carry-over effects of ALAN were also present; juvenile toads that had been exposed to larval ALAN exhibited marginally increased activity. In this time frame and system, our experiments suggested ALAN's effects act primarily through direct effects, rather than indirect effects, and can persist across life stages.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1951
Permanent link to this record
 

 
Author Grunst, M.L.; Raap, T.; Grunst, A.S.; Pinxten, R.; Eens, M.
Title (up) Artificial light at night does not affect telomere shortening in a developing free-living songbird: A field experiment Type Journal Article
Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment
Volume in press Issue Pages
Keywords Animals
Abstract Artificial light at night (ALAN) is an increasingly pervasive anthropogenic disturbance factor. ALAN can seriously disrupt physiological systems that follow circadian rhythms, and may be particularly influential early in life, when developmental trajectories are sensitive to stressful conditions. Using great tits (Parus major) as a model species, we experimentally examined how ALAN affects physiological stress in developing nestlings. We used a repeated-measure design to assess effects of ALAN on telomere shortening, body mass, tarsus length and body condition. Telomeres are repetitive nucleotide sequences that protect chromosomes from damage and malfunction. Early-life telomere shortening can be accelerated by environmental stressors, and has been linked to later-life declines in survival and reproduction. We also assayed nitric oxide, as an additional metric of physiological stress, and determined fledging success. Change in body condition between day 8 and 15 differed according to treatment. Nestlings exposed to ALAN displayed a trend towards a decline in condition, whereas control nestlings displayed a trend towards increased condition. This pattern was driven by a greater increase in tarsus length relative to mass in nestlings exposed to ALAN. Nestlings in poorer condition and nestlings that were smaller than their nest mates had shorter telomeres. However, exposure to ALAN was unrelated to telomere shortening, and also had no effect on nitric oxide concentrations or fledging success. Thus, exposure to ALAN may not have led to sufficient stress to induce telomere shortening. Indeed, plasticity in other physiological systems could allow nestlings to maintain telomere length despite moderate stress. Alternatively, the cascade of physiological and behavioral responses associated with light exposure may have no net effect on telomere dynamics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2161
Permanent link to this record
 

 
Author Maggi, E.; Bongiorni, L.; Fontanini, D.; Capocchi, A.; Dal Bello, M.; Giacomelli, A.; Benedetti‐Cecchi, L.
Title (up) Artificial light at night erases positive interactions across trophic levels Type Journal Article
Year 2019 Publication Functional Ecology Abbreviated Journal Funct Ecol
Volume Issue Pages in press
Keywords Bacteria; Ecosystems
Abstract 1.Artificial light at night (ALAN) is one of the most recently recognized sources of anthropogenic disturbance, with potentially severe effects on biological systems that are still to be fully explored. Among marine ecosystems, high shore habitats are those more likely to be impacted by ALAN, due to a more intense exposition to outdoor nocturnal lightings (mostly from lamps along coastal streets and promenades, or within harbors, ports and marinas).

2.By performing in situ nocturnal manipulations of a direct source of white LED light and presence of herbivores in a Mediterranean high‐shore habitat, we assessed the interactive effects of light pollution and grazing on two key functional components of the epilithic microbial community (the cyanobacteria, as the main photoautotrophic component, and the other bacteria, mainly dominated by heterotrophs) developing on rocky shores.

3.Results showed an unexpected increase in the diversity of epilithic bacterial biofilm at unlit sites in the presence of grazers, that was more evident on the other (mainly heterotrophic) bacterial component, when giving weight to more abundant families. This effect was likely related to the mechanical removal of dead cells through the grazing activity of consumers. ALAN significantly modified this scenario, by reducing the density of grazers and thus erasing their effects on bacteria, and by increasing the diversity of more abundant cyanobacterial families.

4.Overall, direct and indirect effects on ALAN resulted in a significant increase in the diversity of the photoautotrophic component and a decrease in the heterotrophic one, likely affecting key ecosystem functions acting on rocky shore habitats.

5.ALAN may represent a threat for natural systems through the annihilation of positive interactions across trophic levels, potentially impairing the relationship between biodiversity and functioning of ecosystems and interacting with other global and local stressors currently impinging on coastal areas.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-8463 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2746
Permanent link to this record
 

 
Author Zubidat, A.E.; Fares, B.; Fares, F.; Haim, A.
Title (up) Artificial Light at Night of Different Spectral Compositions Differentially Affects Tumor Growth in Mice: Interaction With Melatonin and Epigenetic Pathways Type Journal Article
Year 2018 Publication Cancer Control : Journal of the Moffitt Cancer Center Abbreviated Journal Cancer Control
Volume 25 Issue 1 Pages 1073274818812908
Keywords Human Health; 6-Smt; Cfl; EE-halogen; GDM-levels; body mass; carbon; corticosterone; cosinor analysis; light at night; yellow-LED
Abstract Lighting technology is rapidly advancing toward shorter wavelength illuminations that offer energy-efficient properties. Along with this advantage, the increased use of such illuminations also poses some health challenges, particularly breast cancer progression. Here, we evaluated the effects of artificial light at night (ALAN) of 4 different spectral compositions (500-595 nm) at 350 Lux on melatonin suppression by measuring its urine metabolite 6-sulfatoxymelatonin, global DNA methylation, tumor growth, metastases formation, and urinary corticosterone levels in 4T1 breast cancer cell-inoculated female BALB/c mice. The results revealed an inverse dose-dependent relationship between wavelength and melatonin suppression. Short wavelength increased tumor growth, promoted lung metastases formation, and advanced DNA hypomethylation, while long wavelength lessened these effects. Melatonin treatment counteracted these effects and resulted in reduced cancer burden. The wavelength suppression threshold for melatonin-induced tumor growth was 500 nm. These results suggest that short wavelength increases cancer burden by inducing aberrant DNA methylation mediated by the suppression of melatonin. Additionally, melatonin suppression and global DNA methylation are suggested as promising biomarkers for early diagnosis and therapy of breast cancer. Finally, ALAN may manifest other physiological responses such as stress responses that may challenge the survival fitness of the animal under natural environments.
Address 1 The Israeli Center for Interdisciplinary Research in Chronobiology, University of Haifa, Haifa, Israel
Corporate Author Thesis
Publisher SAGE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1073-2748 ISBN Medium
Area Expedition Conference
Notes PMID:30477310; PMCID:PMC6259078 Approved no
Call Number IDA @ john @ Serial 2143
Permanent link to this record
 

 
Author Amichai, E.; Kronfeld-Schor, N.
Title (up) Artificial Light at Night Promotes Activity Throughout the Night in Nesting Common Swifts (Apus apus) Type Journal Article
Year 2019 Publication Scientific Reports Abbreviated Journal Sci Rep
Volume 9 Issue 1 Pages 11052
Keywords Animals
Abstract The use of artificial light at night (ALAN) is a rapidly expanding anthropogenic effect that transforms nightscapes throughout the world, causing light pollution that affects ecosystems in a myriad of ways. One of these is changing or shifting activity rhythms, largely synchronized by light cues. We used acoustic loggers to record and quantify activity patterns during the night of a diurnal bird – the common swift – in a nesting colony exposed to extremely intensive artificial illumination throughout the night at Jerusalem's Western Wall. We compared that to activity patterns at three other colonies exposed to none, medium, or medium-high ALAN. We found that in the lower-intensity ALAN colonies swifts ceased activity around sunset, later the more intense the lighting. At the Western Wall, however, swifts remained active throughout the night. This may have important implications for the birds' physiology, breeding cycle, and fitness, and may have cascading effects on their ecosystems.
Address School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2045-2322 ISBN Medium
Area Expedition Conference
Notes PMID:31363144 Approved no
Call Number GFZ @ kyba @ Serial 2594
Permanent link to this record