toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Moaraf, S.; Vistoropsky, Y.; Pozner, T.; Heiblum, R.; Okuliarova, M.; Zeman, M.; Barnea, A. url  doi
openurl 
  Title (up) Artificial light at night affects brain plasticity and melatonin in birds Type Journal Article
  Year 2019 Publication Neuroscience Letters Abbreviated Journal Neurosci Lett  
  Volume in press Issue Pages 134639  
  Keywords Animals; Artificial Light At Night (ALAN); cell proliferation; circadian cycle; melatonin; neuronal densities; zebra finches (Taeniopygia guttata)  
  Abstract Artificial light at night (ALAN), which disrupts the daily cycle of light, has vast biological impacts on all organisms, and is also associated with several health problems. The few existing studies on neuronal plasticity and cognitive functions in mammals indicate that a disruption of the circadian cycle impairs learning and memory and suppresses neurogenesis. However, nothing is known about the effect of ALAN on neuronal plasticity in birds. To this end, zebra finches (Taeniopygia guttata) were exposed to ecologically relevant ALAN intensities (0.5, 1.5 and 5 lux), treated with BrdU to quantify cell proliferation in their ventricular zone (VZ), and compared to controls that were kept under dark nights. We found, in our diurnal birds, that ALAN significantly increased cell proliferation in the VZ. However, neuronal densities in two brain regions decreased under ALAN, suggesting neuronal death. In addition, ALAN suppressed nocturnal melatonin production in a dose-dependent manner, and might also increase body mass. Taken together, our findings add to the notion of the deleterious effect of ALAN.  
  Address Department of Natural and Life Sciences, The Open University of Israel, Ra'anana, 43107, Israel  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3940 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31760086 Approved no  
  Call Number GFZ @ kyba @ Serial 2760  
Permanent link to this record
 

 
Author Kurvers, R.H.J.M.; Drägestein, J.; Hölker, F.; Jechow, A.; Krause, J.; Bierbach, D. url  doi
openurl 
  Title (up) Artificial Light at Night Affects Emergence from a Refuge and Space Use in Guppies Type Journal Article
  Year 2018 Publication Scientific Reports Abbreviated Journal Sci Rep  
  Volume 8 Issue 1 Pages  
  Keywords Animals  
  Abstract Artificial light at night (ALAN) is a major form of anthropogenic pollution. ALAN is well known to affect different behaviours during nighttime, when changes in light conditions often have immediate consequences for the trade-offs individuals experience. How ALAN affects daytime behaviours, however, has received far less attention. Here we studied how ALAN affected daytime personality traits and learning ability. We exposed Trinidadian guppies, Poecilia reticulata, for 10 weeks to different ALAN levels: bright light (24 hrs bright light, ~5,000 lx), dim light (12 hrs bright light; 12 hrs dim light, ~0.5 lx) and control (12 hrs bright light; 12 hrs dark). Afterwards, we tested how the treatments affected diurnal emergence from a refuge, space use, activity, sociability and the ability to memorize the location of companion fish. Individuals exposed to the light treatments (both dim and bright light) emerged quicker from a refuge and fish from the bright light treatment spent relatively more time in the open area of the arena. ALAN did not affect any of the other behaviours, although memory could not be tested since fish did not learn the companions’ location. Our results demonstrate that ALAN, next to affecting nocturnal behaviours, can also affect key diurnal behavioural processes, associated with risk-taking.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2045-2322 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2013  
Permanent link to this record
 

 
Author Pu, G.; Zeng, D.; Mo, L.; Liao, J.; Chen, X. url  doi
openurl 
  Title (up) Artificial Light at Night Alleviates the Negative Effect of Pb on Freshwater Ecosystems Type Journal Article
  Year 2019 Publication International Journal of Molecular Sciences Abbreviated Journal Int J Mol Sci  
  Volume 20 Issue 6 Pages  
  Keywords Ecology; freshwater; ecosystems; metal pollution  
  Abstract Artificial light at night (ALAN) is an increasing phenomenon worldwide that can cause a series of biological and ecological effects, yet little is known about its potential interaction with other stressors in aquatic ecosystems. Here, we tested whether the impact of lead (Pb) on litter decomposition was altered by ALAN exposure using an indoor microcosm experiment. The results showed that ALAN exposure alone significantly increased leaf litter decomposition, decreased the lignin content of leaf litter, and altered fungal community composition and structure. The decomposition rate was 51% higher in Pb with ALAN exposure treatments than in Pb without ALAN treatments, resulting in increased microbial biomass, beta-glucosidase (beta-G) activity, and the enhanced correlation between beta-G and litter decomposition rate. These results indicate that the negative effect of Pb on leaf litter decomposition in aquatic ecosystems may be alleviated by ALAN. In addition, ALAN exposure also alters the correlation among fungi associated with leaf litter decomposition. In summary, this study expands our understanding of Pb toxicity on litter decomposition in freshwater ecosystems and highlights the importance of considering ALAN when assessing environmental metal pollutions.  
  Address College of Life Science, Guangxi Normal University, Guilin 541006, China. chenxx7276@163.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1422-0067 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30884876; PMCID:PMC6471329 Approved no  
  Call Number GFZ @ kyba @ Serial 2334  
Permanent link to this record
 

 
Author Pu, G.; Zeng, D.; Mo, L.; Liao, J.; Chen, X.; Qiu, S.; Lv, Y. url  doi
openurl 
  Title (up) Artificial light at night alter the impact of arsenic on microbial decomposers and leaf litter decomposition in streams Type Journal Article
  Year 2019 Publication Ecotoxicology and Environmental Safety Abbreviated Journal Ecotoxicol Environ Saf  
  Volume in press Issue Pages 110014  
  Keywords Ecology; Microbes; Fungal communities and biodiversity; Illumina sequencing; Light pollution; Litter decomposition; Microbiological oxidation  
  Abstract Artificial light at night (ALAN, also known as light pollution) has been proved to be a contributor to environmental change and a biodiversity threat worldwide, yet little is known about its potential interaction with different metal pollutants, such as arsenic (As), one of the largest threats to aquatic ecosystems. To narrow this gap, an indoor microcosm study was performed using an ALAN simulation device to examine whether ALAN exposure altered the impact of arsenic on plant litter decomposition and its associated fungi. Results revealed that microbial decomposers involved in the conversion of As(III) to As(V), and ALAN exposure enhanced this effect; ALAN or arsenic only exposure altered fungal community composition and the correlations between fungi species, as well as stimulated or inhibited litter decomposition, respectively. The negative effects of arsenic on the decomposition of Pterocarya stenoptera leaf litter was alleviated by ALAN resulting in the enhanced photodegradation of leaf litter lignin and microbiological oxidation of As(III) to As(V), the increased microbial biomass and CBH activity, as well as the enhanced correlations between CBH and litter decomposition rate. Overall, results expand our understanding of ALAN on environment and highlight the contribution of ALAN to the toxicity of arsenic in aquatic ecosystems.  
  Address School of Pharmacy and Biological Sciences, Weifang Medical University, Weifang, 261053, China. Electronic address: njandgl@163.com  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0147-6513 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31810590 Approved no  
  Call Number GFZ @ kyba @ Serial 2777  
Permanent link to this record
 

 
Author Willmott, N.J.; Henneken, J.; Selleck, C.J.; Jones, T.M. url  doi
openurl 
  Title (up) Artificial light at night alters life history in a nocturnal orb-web spider Type Journal Article
  Year 2018 Publication PeerJ Abbreviated Journal  
  Volume 6 Issue Pages e5599  
  Keywords Animals  
  Abstract The prevalence of artificial light at night (ALAN) is increasing rapidly around the world. The potential physiological costs of this night lighting are often evident in life history shifts. We investigated the effects of chronic night-time exposure to ecologically relevant levels of LED lighting on the life history traits of the nocturnal Australian garden orb-web spider (Eriophora biapicata). We reared spiders under a 12-h day and either a 12-h natural darkness (∼0 lux) or a 12-h dim light (∼20 lux) night and assessed juvenile development, growth and mortality, and adult reproductive success and survival. We found that exposure to ALAN accelerated juvenile development, resulting in spiders progressing through fewer moults, and maturing earlier and at a smaller size. There was a significant increase in daily juvenile mortality for spiders reared under 20 lux, but the earlier maturation resulted in a comparable number of 0 lux and 20 lux spiders reaching maturity. Exposure to ALAN also considerably reduced the number of eggs produced by females, and this was largely associated with ALAN-induced reductions in body size. Despite previous observations of increased fitness for some orb-web spiders in urban areas and near night lighting, it appears that exposure to artificial night lighting may lead to considerable developmental costs. Future research will need to consider the detrimental effects of ALAN combined with foraging benefits when studying nocturnal insectivores that forage around artificial lights.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2167-8359 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2023  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: