|   | 
Details
   web
Records
Author Ma, X.; Li, C.; Tong, X.; Liu, S.
Title A New Fusion Approach for Extracting Urban Built-up Areas from Multisource Remotely Sensed Data Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 11 Issue 21 Pages 2516
Keywords Remote Sensing
Abstract Recent advances in the fusion technology of remotely sensed data have led to an increased availability of extracted urban information from multiple spatial resolutions and multi-temporal acquisitions. Despite the existing extraction methods, there remains the challenging task of fully exploiting the characteristics of multisource remote sensing data, each of which has its own advantages. In this paper, a new fusion approach for accurately extracting urban built-up areas based on the use of multisource remotely sensed data, i.e., the DMSP-OLS nighttime light data, the MODIS land cover product (MCD12Q1) and Landsat 7 ETM+ images, was proposed. The proposed method mainly consists of two components: (1) the multi-level data fusion, including the initial sample selection, unified pixel resolution and feature weighted calculation at the feature level, as well as pixel attribution determination at decision level; and (2) the optimized sample selection with multi-factor constraints, which indicates that an iterative optimization with the normalized difference vegetation index (NDVI), the modified normalized difference water index (MNDWI), and the bare soil index (BSI), along with the sample training of the support vector machine (SVM) and the extraction of urban built-up areas, produces results with high credibility. Nine Chinese provincial capitals along the Silk Road Economic Belt, such as Chengdu, Chongqing, Kunming, Xining, and Nanning, were selected to test the proposed method with data from 2001 to 2010. Compared with the results obtained by the traditional threshold dichotomy and the improved neighborhood focal statistics (NFS) method, the following could be concluded. (1) The proposed approach achieved high accuracy and eliminated natural elements to a great extent while obtaining extraction results very consistent to those of the more precise improved NFS approach at a fine scale. The average overall accuracy (OA) and average Kappa values of the extracted urban built-up areas were 95% and 0.83, respectively. (2) The proposed method not only identified the characteristics of the urban built-up area from the nighttime light data and other daylight images at the feature level but also optimized the samples of the urban built-up area category at the decision level, making it possible to provide valuable information for urban planning, construction, and management with high accuracy.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2731
Permanent link to this record
 

 
Author Määttä, I.; Lessmann, C.
Title Human Lights Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 11 Issue 19 Pages 2194
Keywords Remote Sensing
Abstract Satellite nighttime light data open new opportunities for economic research. The data are objective and suitable for the study of regions at various territorial levels. Given the lack of reliable official data, nightlights are often a proxy for economic activity, particularly in developing countries. However, the commonly used product, Stable Lights, has difficulty separating background noise from economic activity at lower levels of light intensity. The problem is rooted in the aim of separating transient light from stable lights, even though light from economic activity can also be transient. We propose an alternative filtering process that aims to identify lights emitted by human beings. We train a machine learning algorithm to learn light patterns in and outside built-up areas using Global Human Settlements Layer (GHSL) data. Based on predicted probabilities, we include lights in those places with a high likelihood of being man-made. We show that using regional light characteristics in the process increases the accuracy of predictions at the cost of introducing a mechanical spatial correlation. We create two alternative products as proxies of economic activity. Global Human Lights minimizes the bias from using regional information, while Local Human Lights maximizes accuracy. The latter shows that we can improve the detection of human-generated light, especially in Africa.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2999
Permanent link to this record
 

 
Author Zhao,; Zhou,; Li,; Cao,; He,; Yu,; Li,; Elvidge,; Cheng,; Zhou,
Title Applications of Satellite Remote Sensing of Nighttime Light Observations: Advances, Challenges, and Perspectives Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 11 Issue 17 Pages 1971
Keywords Remote Sensing; Review
Abstract Nighttime light observations from remote sensing provide us with a timely and spatially explicit measure of human activities, and therefore enable a host of applications such as tracking urbanization and socioeconomic dynamics, evaluating armed conflicts and disasters, investigating fisheries, assessing greenhouse gas emissions and energy use, and analyzing light pollution and health effects. The new and improved sensors, algorithms, and products for nighttime lights, in association with other Earth observations and ancillary data (e.g., geo-located big data), together offer great potential for a deep understanding of human activities and related environmental consequences in a changing world. This paper reviews the advances of nighttime light sensors and products and examines the contributions of nighttime light remote sensing to perceiving the changing world from two aspects (i.e., human activities and environmental changes). Based on the historical review of the advances in nighttime light remote sensing, we summarize the challenges in current nighttime light remote sensing research and propose four strategic directions, including: Improving nighttime light data; developing a long time series of consistent nighttime light data; integrating nighttime light observations with other data and knowledge; and promoting multidisciplinary and interdisciplinary analyses of nighttime light observations.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2677
Permanent link to this record
 

 
Author Zhou, H.; Liu, L.; Lan, M.; Yang, B.; Wang, Z.
Title Assessing the Impact of Nightlight Gradients on Street Robbery and Burglary in Cincinnati of Ohio State, USA Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 11 Issue 17 Pages 1958
Keywords Remote Sensing; Public Safety; Crime
Abstract Previous research has recognized the importance of edges to crime. Various scholars have explored how one specific type of edges such as physical edges or social edges affect crime, but rarely investigated the importance of the composite edge effect. To address this gap, this study introduces nightlight data from the Visible Infrared Imaging Radiometer Suite sensor on the Suomi National Polar-orbiting Partnership Satellite (NPP-VIIRS) to measure composite edges. This study defines edges as nightlight gradients—the maximum change of nightlight from a pixel to its neighbors. Using nightlight gradients and other control variables at the tract level, this study applies negative binomial regression models to investigate the effects of edges on the street robbery rate and the burglary rate in Cincinnati. The Akaike Information Criterion (AIC) of models show that nightlight gradients improve the fitness of models of street robbery and burglary. Also, nightlight gradients make a positive impact on the street robbery rate whilst a negative impact on the burglary rate, both of which are statistically significant under the alpha level of 0.05. The different impacts on these two types of crimes may be explained by the nature of crimes and the in-situ characteristics, including nightlight.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2828
Permanent link to this record
 

 
Author Wang, C.; Qin, H.; Zhao, K.; Dong, P.; Yang, X.; Zhou, G.; Xi, X.
Title Assessing the Impact of the Built-Up Environment on Nighttime Lights in China Type Journal Article
Year 2019 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 11 Issue 14 Pages 1712
Keywords Remote Sensing
Abstract Figuring out the effect of the built-up environment on artificial light at night is essential for better understanding nighttime luminosity in both socioeconomic and ecological perspectives. However, there are few studies linking artificial surface properties to nighttime light (NTL). This study uses a statistical method to investigate effects of construction region environments on nighttime brightness and its variation with building height and regional economic development level. First, we extracted footprint-level target heights from Geoscience Laser Altimeter System (GLAS) waveform light detection and ranging (LiDAR) data. Then, we proposed a set of built-up environment properties, including building coverage, vegetation fraction, building height, and surface-area index, and then extracted these properties from GLAS-derived height, GlobeLand30 land-cover data, and DMSP/OLS radiance-calibrated NTL data. Next, the effects of non-building areas on NTL data were removed based on a supervised method. Finally, linear regression analyses were conducted to analyze the relationships between nighttime lights and built-up environment properties. Results showed that building coverage and vegetation fraction have weak correlations with nighttime lights (R2 < 0.2), building height has a moderate correlation with nighttime lights (R2 = 0.48), and surface-area index has a significant correlation with nighttime lights (R2 = 0.64). The results suggest that surface-area index is a more reasonable measure for estimating light number and intensity of NTL because it takes into account both building coverage and height, i.e., building surface area. Meanwhile, building height contributed to nighttime lights greater than building coverage. Further analysis showed the correlation between NTL and surface-area index becomes stronger with the increase of building height, while it is the weakest when the regional economic development level is the highest. In conclusion, these results can help us better understand the determinants of nighttime lights.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2607
Permanent link to this record