|   | 
Details
   web
Records
Author Cabrera-Cruz, S.A.; Cohen, E.B.; Smolinsky, J.A.; Buler, J.J.
Title Artificial Light at Night is Related to Broad-Scale Stopover Distributions of Nocturnally Migrating Landbirds along the Yucatan Peninsula, Mexico Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 3 Pages 395
Keywords Animals
Abstract The distributions of birds during migratory stopovers are influenced by a hierarchy of factors. For example, in temperate regions, migrants are concentrated near areas of bright artificial light at night (ALAN) and also the coastlines of large water bodies at broad spatial scales. However, less is known about what drives broad-scale stopover distributions in the tropics. We quantified seasonal densities of nocturnally migrating landbirds during spring and fall of 2011–2015, using two weather radars on the Yucatan peninsula, Mexico (Sabancuy and Cancun). We tested the influence of environmental predictors in explaining broad-scale bird stopover densities. We predicted higher densities in areas (1) closer to the coast in the fall and farther away in spring and (2) closer to bright ALAN and with lower ALAN intensity in both seasons. We found that birds were more concentrated near the coastline in the fall and away from it in spring around Cancun but not Sabancuy. Counter to our expectations, we detected increased bird densities with increased distance from lights in spring around Sabancuy, and in both seasons around Cancun, suggesting avoidance of bright areas during those seasons. This is the first evidence of broad-scale bird avoidance of bright areas during stopover.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3004
Permanent link to this record
 

 
Author Tabaka, P.
Title Pilot Measurement of Illuminance in the Context of Light Pollution Performed with an Unmanned Aerial Vehicle Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 13 Pages 2124
Keywords Instrumentation; Remote Sensing
Abstract This article presents the methodology and results of pilot field illuminance measurements using an unmanned aerial vehicle (UAV). The main goal of the study was to quantify the luminous flux emitted in the upper hemisphere (toward the sky) based on obtained measurement data. The luminous flux emitted toward the sky is the source of undesirable light pollution. For test purposes, a height-adjustable mobile park lantern was constructed, at the top of which any type of luminaire can be installed. In the pilot measurements, two real opal sphere-type luminaires were considered. The lantern was situated in an open area located away from a large city agglomeration. To determine the unusable luminous flux, illuminance was measured, placing the necessary measuring equipment on board a UAV. The measurements were supplemented with the registration of illuminance on the ground upon which the lantern was installed. Based on these data, the useful luminous flux was calculated. The findings show that UAVs may be successfully used for the assessment of the influence of lighting on the light pollution effect.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3040
Permanent link to this record
 

 
Author Jia, T.; Chen, K.; Li, X.
Title Exploring the Factors Controlling Nighttime Lights from Prefecture Cities in Mainland China with the Hierarchical Linear Model Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 13 Pages 2119
Keywords Remote Sensing
Abstract Nighttime light data have been proven to be valuable for socioeconomic studies. However, they are not only affected by anthropogenic factors but also by physical factors, and previous studies have rarely examined these diverse variables in a systematic way that explains differences in nighttime lights across different cities. In this paper, hierarchical linear models at two levels of city and province were developed to investigate the nighttime lights effect on cross-level factors. An experiment was conducted for 281 prefecture cities in Mainland China using orbital satellite data in 2016. (1) There exist significant differences among city average lights, of which 49.9% is caused at the provincial level, indicating the factors at the provincial level cannot be ignored. (2) Economy-energy-infrastructure and demography factors have a significant positive lights effect. Meanwhile, industry-information and living-standard factors at the provincial level can further significantly increase these differences by 18.30% and 29.01%, respectively. (3) The natural-greenness factor displayed a significant negative lights effect, and its interaction with natural-ecology will continue to decrease city lights by 11.99%. However, artificial-greenness is an unreliable city-level factor explaining lights variations. (4) As for the negative lights effect of elevation and latitude, these become significant in a multivariate context and contribute lights indirectly. (5) The two-level hierarchical linear models are statistically significant at the level of 10%, and compared with the null model, the explained variances on city lights can be improved by 70% at the city level and 90% at the provincial level in the final mixed effect model.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3037
Permanent link to this record
 

 
Author Gao, S.; Chen, Y.; Liang, L.; Gong, A.
Title Post-Earthquake Night-Time Light Piecewise (PNLP) Pattern Based on NPP/VIIRS Night-Time Light Data: A Case Study of the 2015 Nepal Earthquake Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 12 Pages 2009
Keywords Remote Sensing
Abstract Earthquakes are unpredictable and potentially destructive natural disasters that take a long time to recover from. Monitoring post-earthquake human activity (HA) is of great significance to recovery and reconstruction work. There is a strong correlation between night-time light (NTL) and HA, which aid in the study of spatiotemporal changes in post-earthquake human activities. However, seasonal and noise impact from National Polar-Orbiting Partnership Satellite Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) data greatly limits their application. To tackle these issues, random noise and seasonal fluctuation of NPP/VIIRS from January 2014 to December 2018 is removed by adopting the seasonal-trend decomposition procedure based on loess (STL). Based on the theory of post-earthquake recovery model, a post-earthquake night-time light piecewise (PNLP) pattern is explored by employing the National Polar-Orbiting Partnership Satellite Visible Infrared Imaging Radiometer Suite (NPP/VIIRS) monthly data. PNLP indicators, including pre-earthquake development rate (kp), recovery rate (kr1), reconstruction rate (kr2), development rate (kd), relative reconstruction rate (krp) and loss (S), are defined to describe the PNLP pattern. Furthermore, the 2015 Nepal earthquake is chosen as a case study and the spatiotemporal changes in different areas are analyzed. The results reveal that: (1) STL is an effective algorithm for obtaining HA trend from the time series of denoising NTL; (2) the PNLP pattern, divided into four phases, namely the emergency phase (EP), recovery phase (RP-1), reconstruction phase (RP-2), and development phase (DP), aptly describes the variation in post-earthquake HA; (3) PNLP indicators are capable of evaluating the recovery differences across regions. The main socio-economic factors affecting the PNLP pattern and PNLP indicators are energy source for lighting, type of building, agricultural economy, and human poverty index. Based on the NPP/VIIRS data, the PNLP pattern can reflect the periodical changes of HA after earthquakes and provide an effective means for the analysis and evaluation of post-earthquake recovery and reconstruction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3038
Permanent link to this record
 

 
Author Ren, Z.; Liu, Y.; Chen, B.; Xu, B.
Title Where Does Nighttime Light Come From? Insights from Source Detection and Error Attribution Type Journal Article
Year 2020 Publication Remote Sensing Abbreviated Journal Remote Sensing
Volume 12 Issue 12 Pages 1922
Keywords Remote Sensing
Abstract Nighttime light remote sensing has aroused great popularity because of its advantage in estimating socioeconomic indicators and quantifying human activities in response to the changing world. Despite many advances that have been made in method development and implementation of nighttime light remote sensing over the past decades, limited studies have dived into answering the question: Where does nighttime light come from? This hinders our capability of identifying specific sources of nighttime light in urbanized regions. Addressing this shortcoming, here we proposed a parcel-oriented temporal linear unmixing method (POTLUM) to identify specific nighttime light sources with the integration of land use data. Ratio of root mean square error was used as the measure to assess the unmixing accuracy, and parcel purity index and source sufficiency index were proposed to attribute unmixing errors. Using the Visible Infrared Imaging Radiometer Suite (VIIRS) nighttime light dataset from the Suomi National Polar-Orbiting Partnership (NPP) satellite and the newly released Essential Urban Land Use Categories in China (EULUC-China) product, we applied the proposed method and conducted experiments in two China cities with different sizes, Shanghai and Quzhou. Results of the POTLUM showed its relatively robust applicability of detecting specific nighttime light sources, achieving an rRMSE of 3.38% and 1.04% in Shanghai and Quzhou, respectively. The major unmixing errors resulted from using impure land parcels as endmembers (i.e., parcel purity index for Shanghai and Quzhou: 54.48%, 64.09%, respectively), but it also showed that predefined light sources are sufficient (i.e., source sufficiency index for Shanghai and Quzhou: 96.53%, 99.55%, respectively). The method presented in this study makes it possible to identify specific sources of nighttime light and is expected to enrich the estimation of structural socioeconomic indicators, as well as better support various applications in urban planning and management.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2072-4292 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 3032
Permanent link to this record