|
Records |
Links  |
|
Author |
Zielinska-Dabkowska, K.M.; Xavia, K. |

|
|
Title |
Global Approaches to Reduce Light Pollution from Media Architecture and Non-Static, Self-Luminous LED Displays for Mixed-Use Urban Developments |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Sustainability |
Abbreviated Journal |
Sustainability |
|
|
Volume |
11 |
Issue |
12 |
Pages |
3446 |
|
|
Keywords |
Lighting |
|
|
Abstract |
Urban environments have become significantly brighter and more illuminated, and cities now consider media architecture and non-static, self-luminous LED displays an essential element of their strategy to attract residents, visitors, and tourists in the hours after dark. Unfortunately, most often, they are not designed with care, consideration, and awareness, nor do they support the visual wellbeing and circadian rhythms of humans. They also increase light pollution which has an adverse effect on the environment. The aim of this study was to estimate the scale of the negative impact of 28 non-static, self-luminous LED shop window displays within a real-life city context along the main shopping street Banhofstrasse in Zurich, Switzerland. An experimental field measurement survey investigation was performed to identify visual luminance with commonly available tools such as a luminance meter and a digital reflex camera for luminance photography. Moreover, the most important global approaches to reduce light pollution were evaluated in the form of existing guidelines, technical standards, and laws, all of which should be considered when specifying illuminated digital advertisements. A literature review and survey results both confirmed the extent of the problem and highlighted, too, the need to better measure, apply, and manage this new technology. The authors’ proposal for improvements involve practical recommendations for the design and implementation of future projects which can positively guide and direct this growing trend. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2071-1050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2601 |
|
Permanent link to this record |
|
|
|
|
Author |
Bará, S.; Lima, R.C.; Zamorano, J. |

|
|
Title |
Monitoring Long-Term Trends in the Anthropogenic Night Sky Brightness |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Sustainability |
Abbreviated Journal |
Sustainability |
|
|
Volume |
11 |
Issue |
11 |
Pages |
3070 |
|
|
Keywords |
Skyglow |
|
|
Abstract |
Monitoring long-term trends in the evolution of the anthropogenic night sky brightness is a demanding task due to the high dynamic range of the artificial and natural light emissions and the high variability of the atmospheric conditions that determine the amount of light scattered in the direction of the observer. In this paper, we analyze the use of a statistical indicator, the mFWHM, to assess the night sky brightness changes over periods of time larger than one year. The mFWHM is formally defined as the average value of the recorded magnitudes contained within the full width at half-maximum region of the histogram peak corresponding to the scattering of artificial light under clear skies in the conditions of a moonless astronomical night (sun below −18°, and moon below −5°). We apply this indicator to the measurements acquired by the 14 SQM detectors of the Galician Night Sky Brightness Monitoring Network during the period 2015–2018. Overall, the available data suggest that the zenithal readings in the Sky Quality Meter (SQM) device-specific photometric band tended to increase during this period of time at an average rate of +0.09 magSQM/arcsec2 per year. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
2071-1050 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2552 |
|
Permanent link to this record |
|
|
|
|
Author |
Tabaka, P.; Rozga, P. |

|
|
Title |
Influence of a Light Source Installed in a Luminaire of Opal Sphere Type on the Effect of Light Pollution |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Energies |
Abbreviated Journal |
Energies |
|
|
Volume |
13 |
Issue |
2 |
Pages |
306 |
|
|
Keywords |
Lighting |
|
|
Abstract |
The article presents the results of the studies concerning the influence of a light source installed in luminaire of opal sphere type on the light pollution effect of the night sky. It is known from literature reports that the effect of light pollution is influenced by the spectral distribution of light. Although the influence of the spectral distribution has been widely studied from different perspectives, there is still a need to study this phenomenon—for example, from the point of view of the spectral reflection properties of the ground, on which the lanterns are installed. Hence, the above-mentioned aspect was considered in the authors’ investigations. The luminaire considered has been equipped with 20 different light sources, including the latest generation of lamps (light-emitting diodes, LEDs) as well as the conventional ones. With respect to these light sources, the measurements of light distribution and spectral distribution of emitted radiation of the luminaire were performed. Having these measurement data, the simulations were carried out using the DIALux software, and the calculations were made using the specially prepared calculation tool. On the basis of the results obtained in this way this was stated that the type of light source installed in the luminaire has a significant effect on the sky glow. An important factor affecting light pollution is not only the value of the luminous flux emitted upward but also the spectral characteristics of the emitted radiation, the impact of which is most noticeable. The conclusions from the studies indicate the next steps in the analysis of the light pollution effect. These steps will be focused on extended analysis of LEDs as modern and developed light sources. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1996-1073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
2815 |
|
Permanent link to this record |
|
|
|
|
Author |
Zhu, Y.; Xu, D.; Saleem, A.; Ma, R.; Cheng, J. |

|
|
Title |
Can Nighttime Light Data Be Used to Estimate Electric Power Consumption? New Evidence from Causal-Effect Inference |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Energies |
Abbreviated Journal |
Energies |
|
|
Volume |
12 |
Issue |
16 |
Pages |
3154 |
|
|
Keywords |
Society; electric power consumption; nighttime light data; panel econometrics; panel Granger causality |
|
|
Abstract |
Nighttime light data are often used to estimate some socioeconomic indicators, such as energy consumption, GDP, population, etc. However, whether there is a causal relationship between them needs further study. In this paper, we propose a causal-effect inference method to test whether nighttime light data are suitable for estimating socioeconomic indicators. Data on electric power consumption and nighttime light intensity in 77 countries were used for the empirical research. The main conclusions are as follows: First, nighttime light data are more appropriate for estimating electric power consumption in developing countries, such as China, India, and others. Second, more latent factors need to be added into the model when estimating the power consumption of developed countries using nighttime light data. Third, the light spillover effect is relatively strong, which is not suitable for estimating socioeconomic indicators in the contiguous regions between developed countries and developing countries, such as Spain, Turkey, and others. Finally, we suggest that more attention should be paid in the future to the intrinsic logical relationship between nighttime light data and socioeconomic indicators. |
|
|
Address |
School of Economics and Management, China University of Geosciences, Wuhan 430074, China; xdy(at)cug.edu.cn |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
MDPI |
Place of Publication |
|
Editor |
|
|
|
Language |
English |
Summary Language |
English |
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1996-1073 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
IDA @ john @ |
Serial |
2614 |
|
Permanent link to this record |
|
|
|
|
Author |
Pérez Vega, C.; Zielinska-Dabkowska, K.M.; Hölker, F. |

|
|
Title |
Urban Lighting Research Transdisciplinary Framework—A Collaborative Process with Lighting Professionals |
Type |
Journal Article |
|
Year |
2021 |
Publication |
International Journal of Environmental Research and Public Health |
Abbreviated Journal |
Ijerph |
|
|
Volume |
18 |
Issue |
2 |
Pages |
624 |
|
|
Keywords |
Planning; Lighting |
|
|
Abstract |
Over the past decades, lighting professionals have influenced the experience of the night by brightly illuminating streets, buildings, skylines, and landscapes 24/7. When this became the accepted norm, a dual perspective on night-time was shaped and the visual enjoyment of visitors after dusk was prioritized over natural nightscapes (nocturnal landscapes). During this time, researchers of artificial light at night (ALAN) observed and reported a gradual increase in unnatural brightness and a shift in color of the night-time environment. As a consequence, ALAN has been identified as a relevant pollutant of aquatic and terrestrial habitats, and an environmental stressor, which may adversely affect a wide range of organisms, from micro-organisms to humans. Unfortunately, lighting professionals and ALAN researchers usually attempt to solve today’s sustainable urban lighting problems distinctive to their fields of study, without a dialogue between research and practice. Therefore, in order to translate research knowledge as an applicable solution for the lighting practice and to minimize the impact on the environment, a collaborative framework involving a transdisciplinary process with lighting professionals is crucial to potentially bring the practice, research, production, decision-making, and planning closer to each other. This paper presents a framework to help reduce the existing gap of knowledge, because appropriate lighting applications depend upon it. Access to less light polluted nightscapes in urban environments is just as important as access to unpolluted water, food, and air. This call for action towards sustainable urban lighting should be included in future lighting policies to solve the urgent environmental and health challenges facing our world. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1660-4601 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
|
Approved |
no |
|
|
Call Number |
GFZ @ kyba @ |
Serial |
3246 |
|
Permanent link to this record |