|   | 
Details
   web
Records
Author Dominoni, D.M.; Smit, J.A.H.; Visser, M.E.; Halfwerk, W.
Title Multisensory pollution: Artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major) Type Journal Article
Year 2019 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume (down) 256 Issue Pages 113314
Keywords Animals
Abstract Urbanisation is increasing globally at a rapid pace. Consequently, wild species face novel environmental stressors associated with urban sprawl, such as artificial light at night and noise. These stressors have pervasive effects on the behaviour and physiology of many species. Most studies have singled out the impact of just one of these stressors, while in the real world they are likely to co-occur both temporally and spatially, and we thus lack a clear understanding of the combined effect of anthropogenic stressors on wild species. Here, we experimentally exposed captive male great tits (Parus major) to artificial light at night and 24 h noise in a fully factorial experiment. We then measured the effect of both these stressors on their own and their combination on the amount and timing of activity patterns. We found that both light and noise affected activity patterns when presented alone, but in opposite ways: light increased activity, particularly at night, while noise reduced it, particularly during the day. When the two stressors were combined, we found a synergistic effect on the total activity and the nighttime activity, but an antagonistic effect on daytime activity. The significant interaction between noise and light treatment also differed among forest and city birds. Indeed, we detected a significant interactive effect on light and noise on daytime, nighttime, dusktime and offset of activity of urban birds, but not of forest birds. These results suggest that both artificial light at night and anthropogenic noise can drive changes in activity patterns, but that the specific impacts depend on the habitat of origin. Furthermore, our results demonstrate that co-occurring exposure to noise and light can lead to a stronger impact at night than predicted from the additive effects and thus that multisensory pollution may be a considerable threat for wildlife.
Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands; avide.dominoni(at)glasgow.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2744
Permanent link to this record
 

 
Author Renthlei, Z.; Trivedi, A.K.
Title Effect of urban environment on pineal machinery and clock genes expression of tree sparrow (Passer montanus) Type Journal Article
Year 2019 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume (down) 255 Issue Pages 113278
Keywords Animals
Abstract Increasing urbanisation is altering the physiology of wild animals and the mechanisms involved are largely unknown. We hypothesised that altering the physiology of urban organisms is due to the effect of extra light at night on the circadian clock by modulating the expression of pineal machinery and clock genes. Two experiments were performed. In Experiment 1, immediately after being procured from their respective sites (urban and rural sites), birds were released individually in LLdim light conditions. Circadian rhythm period, activity duration, and total activity count were calculated and did not differ between urban and rural birds. In Experiment 2, birds (from urban and rural habitats) were sampled at six time points at regular 4-h intervals, beginning 1 h after sunrise. We measured daily variations in plasma melatonin levels. We also analysed the expression levels of Aanat, Mel1A and Mel1B as an indicator of melatonin biosynthesis and action machinery. Clock and clock-controlled genes (Bmal1, Clock, Per2, Per3, Cry1 and Npas2) were studied in the hypothalamus, the pineal gland, and retina to investigate the effects of urban habitats on the circadian clock. Our results show that there is a lower expression of Aanat in the pineal gland and relatively low plasma melatonin levels in urban birds. Further, clock genes are also differentially expressed in all three central tissues of urban birds. We propose that alterations in the melatonin biosynthesis machinery and the expression of clock genes could result in miscalculations in the internal timing of the organism, with environmental timings leading to altered physiology in urban wild animals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2682
Permanent link to this record
 

 
Author Russo, D.; Cosentino, F.; Festa, F.; De Benedetta, F.; Pejic, B.; Cerretti, P.; Ancillotto, L.
Title Artificial illumination near rivers may alter bat-insect trophic interactions Type Journal Article
Year 2019 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut
Volume (down) 252 Issue Pt B Pages 1671-1677
Keywords Animals
Abstract Artificial illumination at night represents an increasingly concerning threat to ecosystems worldwide, altering persistence, behaviour, physiology and fitness of many organisms and their mutual interactions, in the long-term affecting ecosystem functioning. Bats are very sensitive to artificial light at night because they are obligate nocturnal and feed on insects which are often also responsive to lights. Here we tested the effects of LED lighting on prey-predator interactions at riverine ecosystems, using bats and their insect prey as models, and compared bat and insect reactions in terms of bat activity and prey insect abundance and diversity, respectively, on artificially lit vs. unlit nights. Artificial light influenced both insect and bat assemblages in taxon-specific directions: insect abundances increased at lit sites, particularly due to an increase in small dipterans near the light source. Composition of insect assemblages also differed significantly between lit and unlit sites. Total bat activity declined at lit sites, but this change was mainly due to the response of the most abundant species, Myotis daubentonii, while opportunistic species showed no reaction or even an opposite pattern (Pipistrellus kuhlii). We show that artificial lighting along rivers may affect trophic interactions between bats and insects, resulting in a profound alteration of community structure and dynamics.
Address Wildlife Research Unit, Dipartimento di Agraria, Universita degli Studi di Napoli Federico II, via Universita, 100, 80055, Portici, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes PMID:31284209 Approved no
Call Number GFZ @ kyba @ Serial 2572
Permanent link to this record
 

 
Author Murphy, B.A.; O’Brien, C.; Elliott, J.A.
Title Red light at night permits the nocturnal rise of melatonin production in horses Type Journal Article
Year 2019 Publication The Veterinary Journal Abbreviated Journal The Veterinary Journal
Volume (down) 252 Issue Pages 105360
Keywords Animals
Abstract Exposure to white light at night suppresses melatonin production, impacts circadian rhythms and contributes to ill-health in humans. Human interaction with horses frequently occurs at night. We tested the hypothesis that dim red light would not suppress the nightly rise in serum melatonin levels in horses. In a crossover design, six horses were maintained for consecutive 48 h periods under a Light:Red (LR) and a Light:Dark (LD) photo-schedule. Transitions from light (>200 lux, polychromatic white light) to red (5 lux, peak wavelength 625 nm) or dark (<0.5 lux), and vice versa, coincided with ambient sunset and sunrise times. Blood was collected at 2 h intervals for 24 h during each treatment via indwelling jugular catheters. Samples were harvested for serum and stored at −20 °C until assayed for melatonin by radioimmunoassay. Repeated measures two-way ANOVA and t-tests analysed for differences in LR and LD melatonin profiles and their circadian rhythm parameters.

No time x treatment interaction or effect of treatment on serum melatonin levels were demonstrated (P > 0.05). A robust main effect of time (P<0.0001) predominated, with melatonin levels rising at night under both treatments. Statistically significant differences were not observed when LR and LD were compared for circadian rhythm measures of night time peak, area under the curve (AUC), or for times of onset (evening rise), offset (morning decline), or peak duration. Low intensity red light at night did not impact the pattern of melatonin secretion in this study and is, therefore, unlikely to impact the physiology of circadian or seasonal regulation.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1090-0233 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2656
Permanent link to this record
 

 
Author May, D.; Shidemantle, G.; Melnick-Kelley, Q.; Crane, K.; Hua, J.
Title The effect of intensified illuminance and artificial light at night on fitness and susceptibility to abiotic and biotic stressors Type Journal Article
Year 2019 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume (down) 251 Issue Pages 600-608
Keywords Animals; frogs; amphibians; Lithobates sylvaticus
Abstract Changing light conditions due to human activities represents an important emerging environmental concern. Although changes to natural light conditions can be independently detrimental, in nature, organisms commonly face multiple stressors. To understand the consequences of altered light conditions, we exposed a model amphibian (wood frog; Lithobates sylvaticus) to a control and two anthropogenic light conditions: intensified daytime illuminance and artificial light at night – ALAN (intensified daytime illuminance + extended photoperiod). We measured (1) metrics of fitness (hatching success as well as survival to, size at, and time to metamorphosis) (2) susceptibility (time to death) to a commonly co-occurring anthropogenic stressor, road salt (NaCl) and (3) susceptibility (infection load) to a common parasite (trematode). We also explored behavioral (swimming activity) and physiological (baseline corticosterone (CORT) release rates) changes induced by these light conditions, which may mediate changes in the other measured parameters. We found that both intensified daytime illuminance and ALAN reduced hatching success. In contrast, for amphibians that successfully hatched, neither treatment affected amphibian survival or time to metamorphosis but individuals exposed to ALAN were larger at metamorphosis. The light treatments also had marginal effects; individuals in ALAN treatments were more susceptible to NaCl and trematodes. Finally, tadpoles exposed to ALAN moved significantly less than tadpoles in the control and intensified daytime illuminance treatments, while light had no effect on CORT release rate. Overall, changes in light conditions, in particular ALAN, significantly impacted an amphibian model in laboratory conditions. This work underscores the importance of considering not only the direct effects of light on fitness metrics but also the indirect effects of light with other abiotic and biotic stressors. Anthropogenic-induced changes to light conditions are expected to continue increasing over time so understanding the diverse consequences of shifting light conditions will be paramount to protecting wildlife populations.
Address Biological Sciences Department, Binghamton University (SUNY), Binghamton, NY 13902, USA
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2381
Permanent link to this record