|   | 
Details
   web
Records
Author Renthlei, Z.; Trivedi, A.K.
Title Effect of urban environment on pineal machinery and clock genes expression of tree sparrow (Passer montanus) Type Journal Article
Year 2019 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume (down) 255 Issue Pages 113278
Keywords Animals
Abstract Increasing urbanisation is altering the physiology of wild animals and the mechanisms involved are largely unknown. We hypothesised that altering the physiology of urban organisms is due to the effect of extra light at night on the circadian clock by modulating the expression of pineal machinery and clock genes. Two experiments were performed. In Experiment 1, immediately after being procured from their respective sites (urban and rural sites), birds were released individually in LLdim light conditions. Circadian rhythm period, activity duration, and total activity count were calculated and did not differ between urban and rural birds. In Experiment 2, birds (from urban and rural habitats) were sampled at six time points at regular 4-h intervals, beginning 1 h after sunrise. We measured daily variations in plasma melatonin levels. We also analysed the expression levels of Aanat, Mel1A and Mel1B as an indicator of melatonin biosynthesis and action machinery. Clock and clock-controlled genes (Bmal1, Clock, Per2, Per3, Cry1 and Npas2) were studied in the hypothalamus, the pineal gland, and retina to investigate the effects of urban habitats on the circadian clock. Our results show that there is a lower expression of Aanat in the pineal gland and relatively low plasma melatonin levels in urban birds. Further, clock genes are also differentially expressed in all three central tissues of urban birds. We propose that alterations in the melatonin biosynthesis machinery and the expression of clock genes could result in miscalculations in the internal timing of the organism, with environmental timings leading to altered physiology in urban wild animals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2682
Permanent link to this record
 

 
Author Barentine, J.C.; Kundracik, F.; Kocifaj, M.; Sanders, J.C.; Esquerdo, G.A.; Dalton, A.M.; Foott, B.; Grauer, A.; Tucker, S.; Kyba, C.C.M.
Title Recovering the city street lighting fraction from skyglow measurements in a large-scale municipal dimming experiment Type Journal Article
Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume (down) 253 Issue Pages 107120
Keywords Skyglow; Remote Sensing
Abstract Anthropogenic skyglow dominates views of the natural night sky in most urban settings, and the associated emission of artificial light at night (ALAN) into the environment of cities involves a number of known and suspected negative externalities. One approach to lowering consumption of ALAN in cities is dimming or extinguishing publicly owned outdoor lighting during overnight hours; however, there are few reports in the literature about the efficacy of these programs. Here we report the results of one of the largest municipal lighting dimming experiments to date, involving ~ 20,000 roadway luminaires owned and operated by the City of Tucson, Arizona, U.S. We analyzed both single-channel and spatially resolved ground-based measurements of broadband night sky radiance obtained during the tests, determining that the zenith sky brightness during the tests decreased by ()% near the city center and ()% at an adjacent suburban location on nights when the output of the street lighting system was dimmed from 90% of its full power draw to 30% after local midnight. Modeling these changes with a radiative transfer code yields results suggesting that street lights account for about (14 ± 1)% of light emissions resulting in skyglow seen over the city. A separate derivation from first principles implies that street lighting contributes only % of light seen at the zenith over Tucson. We discuss this inconsistency and suggest routes for future work.
Address 3223 N 1st Ave, Tucson, AZ 85719; john(at)darksky.org
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language Enlish Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2989
Permanent link to this record
 

 
Author Bouroussis, C.A.; Topalis, F.V.
Title Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems – The concept of the drone-gonio-photometer Type Journal Article
Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume (down) 253 Issue Pages 107155
Keywords Instrumentation; Lighting
Abstract This paper presents the ongoing work of the lighting laboratory to develop a standardized method for the measurement of several types of lighting installations using unmanned aircraft systems. The technology of unmanned aircraft systems can incorporate multiple types of sensors and can be programmed to fly in predefined areas and routes in order to perform complex measurements with limited human intervention. This technology provides the freedom of measurements from several angular positions and altitudes in a fast, easy, accurate and repeatable way. The overall aim of this work is to assess the lighting installations, not only against the applicable lighting standards but also to investigate and reveal issues related to light pollution and obtrusive lighting. The latter are issues that in most cases are neglected due to the lack of standardized methods of calculation and measurement. Current assessment methods require illuminance or luminance measurements of horizontal and vertical surfaces generally from the ground. The proposed approach provides a holistic three-dimensional evaluation of the lighting installations beyond the common methods and geometries and opens the discussion for future update of the relevant standards on outdoor lighting. In the scope of this paper, several proof-of-concept cases are presented.
Address Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, 15780, Zografou, Athens, Greece; bouroussis(at)gmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2996
Permanent link to this record
 

 
Author Kolláth, Z.; Cool, A.; Jechow, A.; Kolláth, K.; Száz, D.; Tong, K.P.
Title Introducing the Dark Sky Unit for multi-spectral measurement of the night sky quality with commercial digital cameras Type Journal Article
Year 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume (down) 253 Issue Pages 107162
Keywords Skyglow; Instrumentation; Measurement; light pollution; Radiometry
Abstract Multi-spectral imaging radiometry of the night sky provides essential information on light pollution (skyglow) and sky quality. However, due to the different spectral sensitivity of the devices used for light pollution measurement, the comparison of different surveys is not always trivial. In addition to the differences between measurement approaches, there is a strong variation in natural sky radiance due to the changes of airglow. Thus, especially at dark locations, the classical measurement methods (such as Sky Quality Meters) fail to provide consistent results. In this paper, we show how to make better use of the multi-spectral capabilities of commercial digital cameras and show their application for airglow analysis. We further recommend a novel sky quality metric the ”Dark Sky Unit”, based on an easily usable and SI traceable unit. This unit is a natural choice for consistent, digital camera-based measurements. We also present our camera system calibration methodology for use with the introduced metrics.
Address ELTE BDPK, Szombathely, Department of Physics, Hungary; zkollath(at)gmail.com
Corporate Author Thesis
Publisher Elsever Place of Publication Elsevier Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2998
Permanent link to this record
 

 
Author Russo, D.; Cosentino, F.; Festa, F.; De Benedetta, F.; Pejic, B.; Cerretti, P.; Ancillotto, L.
Title Artificial illumination near rivers may alter bat-insect trophic interactions Type Journal Article
Year 2019 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut
Volume (down) 252 Issue Pt B Pages 1671-1677
Keywords Animals
Abstract Artificial illumination at night represents an increasingly concerning threat to ecosystems worldwide, altering persistence, behaviour, physiology and fitness of many organisms and their mutual interactions, in the long-term affecting ecosystem functioning. Bats are very sensitive to artificial light at night because they are obligate nocturnal and feed on insects which are often also responsive to lights. Here we tested the effects of LED lighting on prey-predator interactions at riverine ecosystems, using bats and their insect prey as models, and compared bat and insect reactions in terms of bat activity and prey insect abundance and diversity, respectively, on artificially lit vs. unlit nights. Artificial light influenced both insect and bat assemblages in taxon-specific directions: insect abundances increased at lit sites, particularly due to an increase in small dipterans near the light source. Composition of insect assemblages also differed significantly between lit and unlit sites. Total bat activity declined at lit sites, but this change was mainly due to the response of the most abundant species, Myotis daubentonii, while opportunistic species showed no reaction or even an opposite pattern (Pipistrellus kuhlii). We show that artificial lighting along rivers may affect trophic interactions between bats and insects, resulting in a profound alteration of community structure and dynamics.
Address Wildlife Research Unit, Dipartimento di Agraria, Universita degli Studi di Napoli Federico II, via Universita, 100, 80055, Portici, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes PMID:31284209 Approved no
Call Number GFZ @ kyba @ Serial 2572
Permanent link to this record