toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kocifaj, M.; Wallner, S.; Solano-Lamphar, H.A. url  doi
openurl 
  Title An asymptotic formula for skyglow modelling over a large territory Type Journal Article
  Year 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume (down) 485 Issue 2 Pages 2214-2224  
  Keywords Skyglow  
  Abstract An analytical framework to predict skyglow due to distant sources is presented, which can be applied to model sky brightness from the zenith toward the horizon along a vertical plane crossing the hemisphere in the azimuthal position of a light source. Although various powerful algorithms have been developed over the last few decades, the time needed for calculation grows exponentially with increasing size of the modelling domain. This is one of the key issues in skyglow computations, because the numerical accuracy improves only slowly as the modelling domain extends. We treat the problem theoretically, by introducing an analytical formula that is well-suited for light sources located at intermediate and long distances from an observation point and allows tremendous time savings in numerical analyses, while keeping the error at a low level. Field experiments carried out in Eastern Austria provided a unique opportunity to validate the model using real-sky luminance data. The fact that the theoretical model allows the prediction of sky luminance within an acceptable error tolerance is not only in line with the experimental data, but also provides new means of remote characterization of light emissions from artificial sources. The method is particularly attractive for rapid and simple retrieval of the amount of light escaping upwards from the dominant light sources surrounding the observation point. We expect that the method can advance the numerical modelling of skyglow substantially, because it allows real-time computations for very large territories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2258  
Permanent link to this record
 

 
Author Kennard, D.C.; Chamberlin, V.D. url  openurl
  Title All-night Light for Layers Type Report
  Year 1931 Publication Abbreviated Journal  
  Volume (down) Bulletin 476 Issue Pages  
  Keywords Animals  
  Abstract  
  Address  
  Corporate Author Ohio Agricultural Experiment Station Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2392  
Permanent link to this record
 

 
Author Yao, J.Q.; Zhai, H.R.; Tang, X.M.; Gao, X.M.; Yang, X.D. url  doi
openurl 
  Title Amazon Fire Monitoring and Analysis Based on Multi-source Remote Sensing Data Type Journal Article
  Year 2020 Publication IOP Conference Series: Earth and Environmental Science Abbreviated Journal IOP Conf. Ser.: Earth Environ. Sci.  
  Volume (down) 474 Issue Pages 042025  
  Keywords Remote Sensing  
  Abstract In August 2019, a large-scale fire broke out in the Amazon rainforest, bringing serious harm to the ecosystem and human beings. In order to accurately monitor the dynamic change of forest fire in Amazon rainforest and analyse the impact of fire spreading and extinction on the environment, firstly, based on NPP VIIRS data covering the Amazon fire area, the sliding window threshold method is adopted to extract the fire point, and the cause of fire change is monitored and analysed according to the time series. Secondly, based on the time series of CALIPSO data, the vertical distribution changes of atmospheric pollutants in the amazon fire area are analysed, and the comprehensive analysis is carried out by combining NPP VIIRS data. The experimental results show that only NPP VIIRS data is used to predict the fire, and the combination of CALIPSO data can better monitor the forest fire and predict the fire development trend. The combination of optical image and laser radar has greater advantages in dynamic fire monitoring and fire impact analysis. The method described in this paper can provide basic data reference for real-time and accurate prediction of forest fires and provide new ideas for dynamic fire monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-1315 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2927  
Permanent link to this record
 

 
Author Bará, S. url  doi
openurl 
  Title Characterizing the zenithal night sky brightness in large territories: how many samples per square kilometre are needed? Type Journal Article
  Year 2017 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume (down) 473 Issue 3 Pages 4164-4173  
  Keywords Instrumentation; atmospheric effects; light pollution; numerical methods; photometry  
  Abstract A recurring question arises when trying to characterize, by means of measurements or theoretical calculations, the zenithal night sky brightness throughout a large territory: how many samples per square kilometre are needed? The optimum sampling distance should allow reconstructing, with sufficient accuracy, the continuous zenithal brightness map across the whole region, whilst at the same time avoiding unnecessary and redundant oversampling. This paper attempts to provide some tentative answers to this issue, using two complementary tools: the luminance structure function and the Nyquist–Shannon spatial sampling theorem. The analysis of several regions of the world, based on the data from the New world atlas of artificial night sky brightness, suggests that, as a rule of thumb, about one measurement per square kilometre could be sufficient for determining the zenithal night sky brightness of artificial origin at any point in a region to within ±0.1 magV arcsec–2 (in the root-mean-square sense) of its true value in the Johnson–Cousins V band. The exact reconstruction of the zenithal night sky brightness maps from samples taken at the Nyquist rate seems to be considerably more demanding.  
  Address 1Departamento de Física Aplicada, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Galicia, Spain; salva.bara(at)usc.es  
  Corporate Author Thesis  
  Publisher Oxford Academic Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 2164  
Permanent link to this record
 

 
Author Quinn, G.E.; Shin, C.H.; Maguire, M.G.; Stone, R.A. url  doi
openurl 
  Title Myopia and ambient lighting at night Type Journal Article
  Year 1999 Publication Nature Abbreviated Journal Nature  
  Volume (down) 399 Issue 6732 Pages 113-114  
  Keywords Human Health  
  Abstract Myopia, or short-sightedness, occurs when the image of distant objects, focused by the cornea and lens, falls in front of the retina. It commonly arises from excessive postnatal eye growth, particularly in the vitreous cavity. Its prevalence is increasing and now reaches 70-90% in some Asian populations1,2. As well as requiring optical correction, myopia is a leading risk factor for acquired blindness in adults because it predisposes individuals to retinal detachment, retinal degeneration and glaucoma. It typically develops in the early school years but can manifest into early adulthood2. Its aetiology is poorly understood but may involve genetic and environmental factors1,2, such as viewing close objects, although how this stimulates eye growth is not known3. We have looked at the effects of light exposure on vision, and find a strong association between myopia and night-time ambient light exposure during sleep in children before they reach two years of age.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:10335839 Approved no  
  Call Number GFZ @ kyba @ Serial 2550  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: