|   | 
Details
   web
Records
Author Grunst, M.L.; Raap, T.; Grunst, A.S.; Pinxten, R.; Eens, M.
Title Artificial light at night does not affect telomere shortening in a developing free-living songbird: A field experiment Type Journal Article
Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment
Volume (down) 662 Issue Pages 266-275
Keywords Animals; birds; Great tit; Parus major; telomere shortening; Stress
Abstract Artificial light at night (ALAN) is an increasingly pervasive anthropogenic disturbance factor. ALAN can seriously disrupt physiological systems that follow circadian rhythms, and may be particularly influential early in life, when developmental trajectories are sensitive to stressful conditions. Using great tits (Parus major) as a model species, we experimentally examined how ALAN affects physiological stress in developing nestlings. We used a repeated-measure design to assess effects of ALAN on telomere shortening, body mass, tarsus length and body condition. Telomeres are repetitive nucleotide sequences that protect chromosomes from damage and malfunction. Early-life telomere shortening can be accelerated by environmental stressors, and has been linked to later-life declines in survival and reproduction. We also assayed nitric oxide, as an additional metric of physiological stress, and determined fledging success. Change in body condition between day 8 and 15 differed according to treatment. Nestlings exposed to ALAN displayed a trend towards a decline in condition, whereas control nestlings displayed a trend towards increased condition. This pattern was driven by a greater increase in tarsus length relative to mass in nestlings exposed to ALAN. Nestlings in poorer condition and nestlings that were smaller than their nest mates had shorter telomeres. However, exposure to ALAN was unrelated to telomere shortening, and also had no effect on nitric oxide concentrations or fledging success. Thus, exposure to ALAN may not have led to sufficient stress to induce telomere shortening. Indeed, plasticity in other physiological systems could allow nestlings to maintain telomere length despite moderate stress. Alternatively, the cascade of physiological and behavioral responses associated with light exposure may have no net effect on telomere dynamics.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2161
Permanent link to this record
 

 
Author Manríquez, P.H.; Jara, M.E.; Diaz, M.I.; Quijón, P.A.; Widdicombe, S.; Pulgar, J.; Manríquez, K.; Quintanilla-Ahumada, D.; Duarte, C.
Title Artificial light pollution influences behavioral and physiological traits in a keystone predator species, Concholepas concholepas Type Journal Article
Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment
Volume (down) 661 Issue Pages 543-552
Keywords Animals; Concholepas concholepas; sea snails; mollusks; Muricidae
Abstract Artificial Light At Night (ALAN) is an increasing global problem that, despite being widely recognized in terrestrial systems, has been studied much less in marine habitats. In this study we investigated the effect of ALAN on behavioral and physiological traits of Concholepas concholepas, an important keystone species of the south-eastern Pacific coast. We used juveniles collected in intertidal habitats that had not previously been exposed to ALAN. In the laboratory we exposed them to two treatments: darkness and white LED (Lighting Emitting Diodes) to test for the impacts of ALAN on prey-searching behavior, self-righting time and metabolism. In the field, the distribution of juveniles was observed during daylight-hours to determine whether C. concholepas preferred shaded or illuminated microhabitats. Moreover, we compared the abundance of juveniles collected during day- and night-time hours. The laboratory experiments demonstrated that juveniles of C. concholepas seek out and choose their prey more efficiently in darkened areas. White LED illuminated conditions increased righting times and metabolism. Field surveys indicated that, during daylight hours, juveniles were more abundant in shaded micro-habitats than in illuminated ones. However, during darkness hours, individuals were not seen to aggregate in any particular microhabitats. We conclude that the exposure to ALAN might disrupt important behavioral and physiological traits of small juveniles in this species which, as a mechanism to avoid visual predators, are mainly active at night. It follows that ALAN in coastal areas might modify the entire community structure of intertidal habitats by altering the behavior of this keystone species.
Address Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Coquimbo, Chile; atriciohmanriquez(at)gmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2173
Permanent link to this record
 

 
Author Manriquez, P.H.; Jara, M.E.; Diaz, M.I.; Quijon, P.A.; Widdicombe, S.; Pulgar, J.; Manriquez, K.; Quintanilla-Ahumada, D.; Duarte, C.
Title Artificial light pollution influences behavioral and physiological traits in a keystone predator species, Concholepas concholepas Type Journal Article
Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume (down) 661 Issue Pages 543-552
Keywords Animals
Abstract Artificial Light At Night (ALAN) is an increasing global problem that, despite being widely recognized in terrestrial systems, has been studied much less in marine habitats. In this study we investigated the effect of ALAN on behavioral and physiological traits of Concholepas concholepas, an important keystone species of the south-eastern Pacific coast. We used juveniles collected in intertidal habitats that had not previously been exposed to ALAN. In the laboratory we exposed them to two treatments: darkness and white LED (Lighting Emitting Diodes) to test for the impacts of ALAN on prey-searching behavior, self-righting time and metabolism. In the field, the distribution of juveniles was observed during daylight-hours to determine whether C. concholepas preferred shaded or illuminated microhabitats. Moreover, we compared the abundance of juveniles collected during day- and night-time hours. The laboratory experiments demonstrated that juveniles of C. concholepas seek out and choose their prey more efficiently in darkened areas. White LED illuminated conditions increased righting times and metabolism. Field surveys indicated that, during daylight hours, juveniles were more abundant in shaded micro-habitats than in illuminated ones. However, during darkness hours, individuals were not seen to aggregate in any particular microhabitats. We conclude that the exposure to ALAN might disrupt important behavioral and physiological traits of small juveniles in this species which, as a mechanism to avoid visual predators, are mainly active at night. It follows that ALAN in coastal areas might modify the entire community structure of intertidal habitats by altering the behavior of this keystone species.
Address Departamento de Ecologia y Biodiversidad, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes PMID:30682607 Approved no
Call Number GFZ @ kyba @ Serial 2213
Permanent link to this record
 

 
Author Zhen, J.; Pei, T.; Xie, S.
Title Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil Type Journal Article
Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ
Volume (down) 659 Issue Pages 363-371
Keywords Remote Sensing
Abstract The spatial distribution of potentially toxic metals (PTMs) has been shown to be related to anthropogenic activities. Several auxiliary variables, such as those related to remote sensing data (e.g. digital elevation models, land use, and enhanced vegetation index) and soil properties (e.g. pH, soil type and cation exchange capacity), have been used to predict the spatial distribution of soil PTMs. However, these variables are mostly focused on natural processes or a single aspect of anthropogenic activities and cannot reflect the effects of integrated anthropogenic activities. Nighttime lights (NTL) images, a representative variable of integrated anthropogenic activities, may have the potential to reflect PTMs distribution. To uncover this relationship and determine the effects on evaluation precision, the NTL was employed as an auxiliary variable to map the distribution of PTMs in the United Kingdom. In this study, areas with a digital number (DN)>/=50 and an area>30km(2) were extracted from NTL images to represent regions of high-frequency anthropogenic activities. Subsequently, the distance between the sampling points and the nearest extracted area was calculated. Barium, lead, zinc, copper, and nickel concentrations exhibited the highest correlation with this distance. Their concentrations were mapped using distance as an auxiliary variable through three different kriging methods, i.e., ordinary kriging (OK), cokriging (CK), and regression kriging (RK). The accuracy of the predictions was evaluated using the leave-one-out cross validation method. Regardless of the elements, CK and RK always exhibited lower mean absolute error and root mean square error, in contrast to OK. This indicates that using the NTL as the auxiliary variable indeed enhanced the prediction accuracy for the relevant PTMs. Additionally, RK showed superior results in most cases. Hence, we recommend RK for prediction of PTMs when using the NTL as the auxiliary variable.
Address State Key Laboratory of Geological Processes and Mineral Resources(GPMR), Faculty of Earth Sciences, China University of Geosciences, Wuhan, 430074, China
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes PMID:30599355 Approved no
Call Number GFZ @ kyba @ Serial 2494
Permanent link to this record
 

 
Author Rabstein, S.; Burek, K.; Lehnert, M.; Beine, A.; Vetter, C.; Harth, V.; Putzke, S.; Kantermann, T.; Walther, J.; Wang-Sattler, R.; Pallapies, D.; Brüning, T.; Behrens, T.
Title Differences in twenty-four-hour profiles of blue-light exposure between day and night shifts in female medical staff Type Journal Article
Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment
Volume (down) 653 Issue Pages 1025-1033
Keywords Human Health
Abstract Light is the strongest zeitgeber currently known for the synchronization of the human circadian timing system. Especially shift workers are exposed to altered daily light profiles. Our objective is the characterization of differences in blue-light exposures between day and night shift taking into consideration modifying factors such as chronotype. We describe 24-hour blue-light profiles as measured with ambient light data loggers (LightWatcher) during up to three consecutive days with either day or night shifts in 100 female hospital staff including 511 observations. Linear mixed models were applied to analyze light profiles and to select time-windows for the analysis of associations between shift work, individual factors, and log mean light exposures as well as the duration of darkness per day. Blue-light profiles reflected different daily activities and were mainly influenced by work time. Except for evening (7–9 p.m.), all time windows showed large differences in blue-light exposures between day and night shifts. Night work reduced the duration of darkness per day by almost 4 h (beta = −3:48 hh:mm, 95% CI (−4:27; −3.09)). Late chronotypes had higher light exposures in the morning and evening compared to women with intermediate chronotype (e.g. morning beta = 0.50 log(mW/m2/nm), 95% CI (0.08; 0.93)). Women with children had slightly higher light exposures in the afternoon than women without children (beta = 0.48, 95% CI (−0.10; 1,06)). Time windows for the description of light should be chosen carefully with regard to timing of shifts. Our results are helpful for future studies to capture relevant light exposure differences and potential collinearities with individual factors. Improvement of well-being of shift workers with altered light profiles may therefore require consideration of both – light at the workplace and outside working hours.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0048-9697 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2139
Permanent link to this record