|   | 
Details
   web
Records
Author Maggi, E.; Benedetti-Cecchi, L.
Title Trophic compensation stabilizes marine primary producers exposed to artificial light at night Type Journal Article
Year 2018 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.
Volume (down) 606 Issue Pages 1-5
Keywords Plants; Animals; Ecology
Abstract Artificial light at night (ALAN) is a widespread phenomenon along coastal areas. Despite increasing evidence of pervasive effects of ALAN on patterns of species distribution and abundance, the potential of this emerging threat to alter ecological processes in marine ecosystems has remained largely unexplored. Here, we show how exposure to white LED lighting, comparable to that experienced along local urbanized coasts, significantly enhanced the impact of grazing gastropods on epilithic microphytobenthos (MPB). ALAN increased both the photosynthetic biomass of MPB and the grazing pressure of gastropods, such that consumers compensated for the positive effect of night lighting on primary producers. Our results indicate that trophic interactions can provide a stabilizing compensatory mechanism against ALAN effects in natural food webs.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0171-8630 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2063
Permanent link to this record
 

 
Author Wilson, P.; Thums, M.; Pattiaratchi, C.; Meekan, M.; Pendoley, K.; Fisher, R.; Whiting, S.
Title Artificial light disrupts the nearshore dispersal of neonate flatback turtles Natator depressus Type Journal Article
Year 2018 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.
Volume (down) 600 Issue Pages 179-192
Keywords Animals
Abstract After emerging from nests, neonate sea turtles entering the water are thought to orientate away from shore using wave cues to guide them out to sea. Artificial light may interfere with this process, but the relative importance of natural and anthropogenic cues to the dispersal of hatchlings is unknown. Here, we used acoustic telemetry to track the movement of flatback turtle (Natator depressus) hatchlings dispersing through nearshore waters. Turtles dispersed in the presence and absence of artificial light through a receiver array where a range of oceanographic variables were measured. Turtle tracks were analysed using a full subsets Generalised Additive Mixed Model approach to identify the most important cues influencing the bearing, variance in bearing (a measure of the ability to orientate directly), rate of travel and time spent in the array. Artificial light reduced their swim speed by up to 30%, increased the amount of time spent in nearshore waters (by 50–150%) and increased the variance in bearing (100–180% more variable), regardless of oceanographic conditions. Under ambient conditions, ocean currents affected the bearing of hatchlings as they left the shore, but when light was present, this effect was diminished, showing turtles actively swam against currents in their attempts to move towards light. After accounting for the effects of currents on hatchlings dispersing under ambient conditions, turtles swam offshore by moving perpendicular to the coastline and did not appear to orient into incident wave direction. Overall, light disrupted the dispersal of hatchlings causing them to linger, become disoriented in the near shore and expend energy swimming against ocean currents.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0171-8630 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1967
Permanent link to this record
 

 
Author Youngstedt, S.D.; Elliott, J.A.; Kripke, D.F.
Title Human Circadian Phase-Response Curves for Exercise Type Journal Article
Year 2019 Publication The Journal of Physiology Abbreviated Journal J Physiol
Volume (down) 597 Issue 8 Pages 2253-2268
Keywords Human Health; Circadian Rhythm; Exercise
Abstract KEY POINTS: Exercise elicits circadian phase-shifting effects, but additional information is needed. The phase-response curve describing the magnitude and direction of circadian rhythm phase shifts depending on the time of the zeigeber (time cue) stimulus is the most fundamental chronobiological tool for alleviating circadian misalignment and related morbidity. 51 older and 48 young adults followed a circadian rhythms measurement protocol for up to 5.5 days, and performed 1 h of moderate treadmill exercise for 3 consecutive days at one of 8 times of day/night. Temporal changes in the phase of 6-sulphatoxymelatonin (aMT6s) were measured from evening onset, cosine acrophase, morning offset, and duration of excretion, establishing significant PRCs for aMT6 onset and acrophase with large phase delays from 7-10 PM and large phase advances at both 7 AM and 1-4 PM. Along with known synergism with bright light, the above PRCs with a second phase advance region (afternoon) could support both practical and clinical applications. ABSTRACT: Although bright light is regarded as the primary circadian zeitgeber, its limitations support exploring alternative zeitgebers. Exercise elicits significant circadian phase-shifting effects, but fundamental information regarding these effects is needed. The primary aim of this study was to establish phase-response curves (PRC) documenting the size and direction of phase shifts in relation to the circadian time of exercise. Aerobically fit older (n = 51, 59-75 y) and young adults (n = 48, 18-30 y) followed a 90-min laboratory ultra-short sleep wake cycle (60 min wake/30 min sleep) for up to 5 (1/2) days. At the same clock time on three consecutive days, each participant performed 60 min of moderate treadmill exercise (65-75% of heart rate reserve) at one of 8 times of day/night. To describe PRCs, phase shifts were measured for the cosine-fitted acrophase of urinary 6-sulphatoxymelatonin (aMT6s), as well as for the evening rise, morning decline, and change in duration of aMT6s excretion. Significant PRCs were found for aMT6s acrophase, onset and duration, with peak phase advances corresponding to clock times of 7 AM and 1PM-4PM, delays from 7 PM-10 PM, and minimal shifts around 4 PM and 2 AM. There were no significant age or sex differences. The amplitudes of the aMT6s onset and acrophase PRCs are comparable to expectations for bright light of equal duration. The phase advance to afternoon exercise and the exercise-induced PRC for change in aMT6s duration are novel findings. The results support further research exploring additive phase shifting effects of bright light and exercise and health benefits. This article is protected by copyright. All rights reserved.
Address Department of Psychiatry, University of California, San Diego, CA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3751 ISBN Medium
Area Expedition Conference
Notes PMID:30784068 Approved no
Call Number GFZ @ kyba @ Serial 2230
Permanent link to this record
 

 
Author Gatford, K.L.; Kennaway, D.J.; Liu, H.; Kleemann, D.O.; Kuchel, T.R.; Varcoe, T.J.
Title Simulated shift work disrupts maternal circadian rhythms and metabolism, and increases gestation length in sheep Type Journal Article
Year 2019 Publication The Journal of Physiology Abbreviated Journal J Physiol
Volume (down) 597 Issue 7 Pages 1889-1904
Keywords Animals; *Circadian Rhythm; Female; Fetal Development; Pregnancy; *Pregnancy, Animal/physiology; Pregnancy, Multiple; Sheep/*physiology; *Shift Work Schedule; Sleep/*physiology; *circadian rhythms; *fetus; *maternal; *pregnancy; *sheep; *shift work
Abstract KEY POINTS: Shift work impairs metabolic health, although its effects during pregnancy are not well understood We evaluated the effects of a simulated shift work protocol for one-third, two-thirds or all of pregnancy on maternal and pregnancy outcomes in sheep. Simulated shift work changed the timing of activity, disrupted hormonal and cellular rhythms, and impaired maternal glucose tolerance during early pregnancy. Gestation length was increased in twin pregnancies, whereas singleton lambs were lighter at a given gestational age if mothers were subjected to shift work conditions in the first one-third of pregnancy. Exposure to rotating night and day shifts, even if only in early pregnancy, may adversely affect maternal metabolic and pregnancy outcomes. ABSTRACT: Shift workers are at increased risk of developing type 2 diabetes and obesity; however, the impact during pregnancy on maternal metabolism is unknown. Using a large animal model, we assessed the impact of simulated shift work (SSW) exposure during pregnancy on maternal circadian rhythms, glucose tolerance and pregnancy outcomes. Following mating, ewes were randomly allocated to a control photoperiod (CON 12 h light, 12 h dark) or to SSW, where the timing of light exposure and food presentation was reversed twice each week for one-third, two-thirds or all of pregnancy. Maternal behaviour followed SSW cycles with increased activity during light exposure and feeding. Melatonin rhythms resynchronized within 2 days of the photoperiod shift, whereas peripheral circadian rhythms were arrhythmic. SSW impaired glucose tolerance (+29%, P = 0.019) and increased glucose-stimulated insulin secretion (+32%, P = 0.018) in ewes with a singleton fetus in early but not late gestation. SSW exposure did not alter rates of miscarriage or stillbirth, although it extended gestation length in twin pregnancies (+2.4 days, P = 0.032). Relative to gestational age, birth weight was lower in singleton progeny of SSW than CON ewes (-476 g, P = 0.016). These results have implications for the large number of women currently engaged in shift work, and further studies are required to determine progeny health impacts.
Address Robinson Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-3751 ISBN Medium
Area Expedition Conference
Notes PMID:30671970; PMCID:PMC6441904 Approved no
Call Number GFZ @ kyba @ Serial 3136
Permanent link to this record
 

 
Author Strobl, E.
Title The Impact of Typhoons on Economic Activity in the Philippines: Evidence from Nightlight Intensity Type Journal Article
Year 2019 Publication ADB Economics Working Paper Series Abbreviated Journal
Volume (down) 589 Issue Pages
Keywords Remote Sensing
Abstract We quantify the economic impact of typhoons in the Philippines. To this end we construct a panel data set of local economic activity derived from nightlight intensity satellite images and a cell level measure of typhoon damage constructed from storm track data, a wind field model, and a stylized damage function. Our econometric results reveal that there is a statistically and potentially economically significant, albeit short- lived, impact of typhoon destruction on local economic activity. Constructing risk profiles from a 60-year historical set of storms suggests that (near) future losses in economic activity for frequent (5-year return period) and rare (50-year return period) events are likely

to range from between 1.0% and 2.5%.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2641
Permanent link to this record