|   | 
Details
   web
Records
Author Arendt, J.; Middleton, B.
Title Human seasonal and circadian studies in Antarctica (Halley, 75 degrees S) Type Journal Article
Year 2018 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol
Volume (down) 258 Issue Pages 250-258
Keywords Human Activities; Acclimatization/*physiology; Actigraphy; Adult; Antarctic Regions; Behavior/*physiology; Circadian Rhythm/*physiology; Darkness; Female; Heart Rate/physiology; Humans; Libido; Light; Male; Melatonin/blood; Photoperiod; *Seasons; Sleep/physiology; Young Adult; *Antarctica; *Circadian; *Light; *Melatonin; *Seasonal
Abstract Living for extended periods in Antarctica exposes base personnel to extremes of daylength (photoperiod) and temperature. At the British Antarctic Survey base of Halley, 75 degrees S, the sun does not rise for 110 d in the winter and does not set for 100 d in summer. Photoperiod is the major time cue governing the timing of seasonal events such as reproduction in many species. The neuroendocrine signal providing photoperiodic information to body physiology is the duration of melatonin secretion which reflects the length of the night: longer in the short days of winter and shorter in summer. Light of sufficient intensity and spectral composition serves to suppress production of melatonin and to set the circadian timing and the duration of the rhythm. In humans early observations suggested that bright (>2000 lux) white light was needed to suppress melatonin completely. Shortly thereafter winter depression (Seasonal Affective Disorder or SAD) was described, and its successful treatment by an artificial summer photoperiod of bright white light, sufficient to shorten melatonin production. At Halley dim artificial light intensity during winter was measured, until 2003, at a maximum of approximately 500 lux in winter. Thus a strong seasonal and circadian time cue was absent. It seemed likely that winter depression would be common in the extended period of winter darkness and could be treated with an artificial summer photoperiod. These observations, and predictions, inspired a long series of studies regarding human seasonal and circadian status, and the effects of light treatment, in a small overwintering, isolated community, living in the same conditions for many months at Halley. We found little evidence of SAD, or change in duration of melatonin production with season. However the timing of the melatonin rhythm itself, and/or that of its metabolite 6-sulphatoxymelatonin (aMT6s), was used as a primary marker of seasonal, circadian and treatment changes. A substantial phase delay of melatonin in winter was advanced to summer phase by a two pulse 'skeleton' bright white light treatment. Subsequently a single morning pulse of bright white light was effective with regard to circadian phase and improved daytime performance. The circadian delay evidenced by melatonin was accompanied by delayed sleep (logs and actigraphy): poor sleep is a common complaint in Polar regions. Appropriate extra artificial light, both standard white, and blue enriched, present throughout the day, effectively countered delay in sleep timing and the aMT6s rhythm. The most important factor appeared to be the maximum light experienced. Another manifestation of the winter was a decline in self-rated libido (men only on base at this time). Women on the base showed lower aspects of physical and mental health compared to men. Free-running rhythms were seen in some subjects following night shift, but were rarely found at other times, probably because this base has strongly scheduled activity and leisure time. Complete circadian adaptation during a week of night shift, also seen in a similar situation on North Sea oil rigs, led to problems readapting back to day shift in winter, compared to summer. Here again timed light treatment was used to address the problem. Sleep, alertness and waking performance are critically dependent on optimum circadian phase. Circadian desynchrony is associated with increased risk of major disease in shift workers. These studies provide some groundwork for countering/avoiding circadian desynchrony in rather extreme conditions.
Address Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK. Electronic address: b.middleton@surrey.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6480 ISBN Medium
Area Expedition Conference
Notes PMID:28526480 Approved no
Call Number IDA @ john @ Serial 2248
Permanent link to this record
 

 
Author Renthlei, Z.; Trivedi, A.K.
Title Effect of urban environment on pineal machinery and clock genes expression of tree sparrow (Passer montanus) Type Journal Article
Year 2019 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume (down) 255 Issue Pages 113278
Keywords Animals
Abstract Increasing urbanisation is altering the physiology of wild animals and the mechanisms involved are largely unknown. We hypothesised that altering the physiology of urban organisms is due to the effect of extra light at night on the circadian clock by modulating the expression of pineal machinery and clock genes. Two experiments were performed. In Experiment 1, immediately after being procured from their respective sites (urban and rural sites), birds were released individually in LLdim light conditions. Circadian rhythm period, activity duration, and total activity count were calculated and did not differ between urban and rural birds. In Experiment 2, birds (from urban and rural habitats) were sampled at six time points at regular 4-h intervals, beginning 1 h after sunrise. We measured daily variations in plasma melatonin levels. We also analysed the expression levels of Aanat, Mel1A and Mel1B as an indicator of melatonin biosynthesis and action machinery. Clock and clock-controlled genes (Bmal1, Clock, Per2, Per3, Cry1 and Npas2) were studied in the hypothalamus, the pineal gland, and retina to investigate the effects of urban habitats on the circadian clock. Our results show that there is a lower expression of Aanat in the pineal gland and relatively low plasma melatonin levels in urban birds. Further, clock genes are also differentially expressed in all three central tissues of urban birds. We propose that alterations in the melatonin biosynthesis machinery and the expression of clock genes could result in miscalculations in the internal timing of the organism, with environmental timings leading to altered physiology in urban wild animals.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2682
Permanent link to this record
 

 
Author Russo, D.; Cosentino, F.; Festa, F.; De Benedetta, F.; Pejic, B.; Cerretti, P.; Ancillotto, L.
Title Artificial illumination near rivers may alter bat-insect trophic interactions Type Journal Article
Year 2019 Publication Environmental Pollution (Barking, Essex : 1987) Abbreviated Journal Environ Pollut
Volume (down) 252 Issue Pt B Pages 1671-1677
Keywords Animals
Abstract Artificial illumination at night represents an increasingly concerning threat to ecosystems worldwide, altering persistence, behaviour, physiology and fitness of many organisms and their mutual interactions, in the long-term affecting ecosystem functioning. Bats are very sensitive to artificial light at night because they are obligate nocturnal and feed on insects which are often also responsive to lights. Here we tested the effects of LED lighting on prey-predator interactions at riverine ecosystems, using bats and their insect prey as models, and compared bat and insect reactions in terms of bat activity and prey insect abundance and diversity, respectively, on artificially lit vs. unlit nights. Artificial light influenced both insect and bat assemblages in taxon-specific directions: insect abundances increased at lit sites, particularly due to an increase in small dipterans near the light source. Composition of insect assemblages also differed significantly between lit and unlit sites. Total bat activity declined at lit sites, but this change was mainly due to the response of the most abundant species, Myotis daubentonii, while opportunistic species showed no reaction or even an opposite pattern (Pipistrellus kuhlii). We show that artificial lighting along rivers may affect trophic interactions between bats and insects, resulting in a profound alteration of community structure and dynamics.
Address Wildlife Research Unit, Dipartimento di Agraria, Universita degli Studi di Napoli Federico II, via Universita, 100, 80055, Portici, Italy
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes PMID:31284209 Approved no
Call Number GFZ @ kyba @ Serial 2572
Permanent link to this record
 

 
Author Falchi, F.; Furgoni, R.; Gallaway, T.A.; Rybnikova, N.A.; Portnov, B.A.; Baugh, K.; Cinzano, P.; Elvidge, C.D.
Title Light pollution in USA and Europe: The good, the bad and the ugly Type Journal Article
Year 2019 Publication Journal of Environmental Management Abbreviated Journal Journal of Environmental Management
Volume (down) 248 Issue Pages 109227
Keywords
Abstract Light pollution is a worldwide problem that has a range of adverse effects on human health and natural eco-systems. Using data from the New World Atlas of Artificial Night Sky Brightness, VIIRS-recorded radiance and Gross Domestic Product (GDP) data, we compared light pollution levels, and the light flux to the population size and GDP at the State and County levels in the USA and at Regional (NUTS2) and Province (NUTS3) levels inEurope. We found 6800-fold differences between the most and least polluted regions in Europe, 120-fold differences in their light flux per capita, and 267-fold differences influx per GDP unit. Yet, we found even greater differences between US counties: 200,000-fold differences in sky pollution, 16,000-fold differences in light flux per capita, and 40,000-fold differences in light flux per GDP unit. These findings may inform policy-makers, helping to reduce energy waste and adverse environmental, cultural and health consequences associated with light pollution.
Address STIL – Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso, Light Pollution Science and Technology Institute, Thiene, Italy; Italy. falchi@lightpollution.it(at)istil.it
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2593
Permanent link to this record
 

 
Author Croft, T.A.
Title Burning Waste Gas in Oil Fields Type Journal Article
Year 1973 Publication Nature Abbreviated Journal Nature
Volume (down) 245 Issue 5425 Pages 375-376
Keywords Remote Sensing
Abstract I WAS recently amazed by some night-time spacecraft photographs, exemplified by Fig. 1, that present graphic evidence of waste and pollution. These were obtained by the United States Air Force DAPP system which has sensors in the visible 0.4 to 1.1 µm band and an infrared imaging system in the 8 to 13 µm band (ref. 1 and J. L. McLucas, personal communication). The visible band sensor is Capable of responding to very dim light with a controllable threshold (T. O. Haig, personal communication) and it provided these pictures. The lights of cities are clearly visible, as are the aurora, surface features illuminated by moonlight, and fires such as those caused by burning gas from oil fields and refineries. Much power is evidently being generated to light the cities of the world since at the inhabited areas are clearly outlined. It is also apparent that, in the process of extracting liquid petroleum from beneath the surface of the Earth, abundant gas supply has been discovered but is not used. Being unable to contain the gas or to transport it to a user, it is simply burnt.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0028-0836 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2365
Permanent link to this record