|   | 
Details
   web
Records
Author Bhardwaj, M.; Soanes, K.; Lahoz-Monfort, J.J.; Lumsden, L.F.; van der Ree, R.
Title Artificial lighting reduces the effectiveness of wildlife-crossing structures for insectivorous bats Type Journal Article
Year 2020 Publication Journal of Environmental Management Abbreviated Journal Journal of Environmental Management
Volume (down) 262 Issue Pages 110313
Keywords Animals
Abstract In an attempt to improve cost-effectiveness, it has become increasingly popular to adapt wildlife crossing structures to enable people to also use them for safe passage across roads. However, the required needs of humans and wildlife may conflict, resulting in a structure that does not actually provide the perceived improvement in cost-effectiveness, but instead a reduction in conservation benefits. For example, lighting within crossing structures for human safety at night may reduce use of the structure by nocturnal wildlife, thus contributing to barrier and mortality effects of roads rather than mitigating them.

In this study, we experimentally evaluated the impact of artificial light at night on the rate of use of wildlife crossing structures, specifically underpasses, by ten insectivorous bat species groups in south-eastern Australia. We monitored bat activity before, during and after artificially lighting the underpasses. We found that bats tended to avoided lit underpasses, and only one species consistently showed attraction to the light. Artificial light at night in underpasses hypothetically increases the vulnerability of bats to road-mortality or to the barrier effect of roads. The most likely outcomes of lighting underpasses were 1. an increase in crossing rate above the freeway and a decrease under the underpasses, or 2. a reduction in crossing rate both above freeways and under the underpasses, when structures were lit. Our results corroborate those of studies on terrestrial mammals, and thus we recommend that underpasses intended to facilitate the movement of wildlife across roads should not be lit.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2846
Permanent link to this record
 

 
Author Touzot, M.; Lengagne, T.; Secondi, J.; Desouhant, E.; Théry, M.; Dumet, A.; Duchamp, C.; Mondy, N.
Title Artificial light at night alters the sexual behaviour and fertilisation success of the common toad Type Journal Article
Year 2020 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume (down) 259 Issue Pages in press
Keywords Animals
Abstract Artificial Light At Night (ALAN) is an emerging pollution, that dramatically keeps on increasing worldwide due to urbanisation and transport infrastructure development. In 2016, it nearly affected 23% of the Earth’s surface. To date, all terrestrial and aquatic ecosystems have been affected. The disruption of natural light cycles due to ALAN is particularly expected for nocturnal species, which require dark periods to forage, move, and reproduce. Apart from chiropterans, amphibians contain the largest proportion of nocturnal species among vertebrates exhibiting an unfavourable conservation status in most parts of the world and living in ALAN polluted areas. Despite the growing number of studies on this subject, our knowledge on the direct influence of nocturnal lighting on amphibians is still scarce. To better understand the consequences of ALAN on the breeding component of amphibian fitness, we experimentally exposed male breeding common toads (Bufo bufo) to ecologically relevant light intensities of 0.01 (control), 0.1 or 5 lux for 12 days. At mating, exposed males took longer than controls to form an amplexus, i.e. to pair with a female, and broke amplexus before egg laying, while controls never did. These behavioural changes were associated with fitness alteration. The fertilisation rate of 5 lux-exposed males was reduced by 25%. Salivary testosterone, which is usually correlated with reproductive behaviours, was not altered by ALAN. Our study demonstrates that ALAN can affect the breeding behaviour of anuran species and reduce one component of their fitness. Given the growing importance of ALAN, more work is needed to understand its long-term consequences on the behaviour and physiology of individuals. It appears essential to identify deleterious effects for animal populations and propose appropriate management solutions in an increasingly brighter world.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2813
Permanent link to this record
 

 
Author Arendt, J.; Middleton, B.
Title Human seasonal and circadian studies in Antarctica (Halley, 75 degrees S) Type Journal Article
Year 2018 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol
Volume (down) 258 Issue Pages 250-258
Keywords Human Activities; Acclimatization/*physiology; Actigraphy; Adult; Antarctic Regions; Behavior/*physiology; Circadian Rhythm/*physiology; Darkness; Female; Heart Rate/physiology; Humans; Libido; Light; Male; Melatonin/blood; Photoperiod; *Seasons; Sleep/physiology; Young Adult; *Antarctica; *Circadian; *Light; *Melatonin; *Seasonal
Abstract Living for extended periods in Antarctica exposes base personnel to extremes of daylength (photoperiod) and temperature. At the British Antarctic Survey base of Halley, 75 degrees S, the sun does not rise for 110 d in the winter and does not set for 100 d in summer. Photoperiod is the major time cue governing the timing of seasonal events such as reproduction in many species. The neuroendocrine signal providing photoperiodic information to body physiology is the duration of melatonin secretion which reflects the length of the night: longer in the short days of winter and shorter in summer. Light of sufficient intensity and spectral composition serves to suppress production of melatonin and to set the circadian timing and the duration of the rhythm. In humans early observations suggested that bright (>2000 lux) white light was needed to suppress melatonin completely. Shortly thereafter winter depression (Seasonal Affective Disorder or SAD) was described, and its successful treatment by an artificial summer photoperiod of bright white light, sufficient to shorten melatonin production. At Halley dim artificial light intensity during winter was measured, until 2003, at a maximum of approximately 500 lux in winter. Thus a strong seasonal and circadian time cue was absent. It seemed likely that winter depression would be common in the extended period of winter darkness and could be treated with an artificial summer photoperiod. These observations, and predictions, inspired a long series of studies regarding human seasonal and circadian status, and the effects of light treatment, in a small overwintering, isolated community, living in the same conditions for many months at Halley. We found little evidence of SAD, or change in duration of melatonin production with season. However the timing of the melatonin rhythm itself, and/or that of its metabolite 6-sulphatoxymelatonin (aMT6s), was used as a primary marker of seasonal, circadian and treatment changes. A substantial phase delay of melatonin in winter was advanced to summer phase by a two pulse 'skeleton' bright white light treatment. Subsequently a single morning pulse of bright white light was effective with regard to circadian phase and improved daytime performance. The circadian delay evidenced by melatonin was accompanied by delayed sleep (logs and actigraphy): poor sleep is a common complaint in Polar regions. Appropriate extra artificial light, both standard white, and blue enriched, present throughout the day, effectively countered delay in sleep timing and the aMT6s rhythm. The most important factor appeared to be the maximum light experienced. Another manifestation of the winter was a decline in self-rated libido (men only on base at this time). Women on the base showed lower aspects of physical and mental health compared to men. Free-running rhythms were seen in some subjects following night shift, but were rarely found at other times, probably because this base has strongly scheduled activity and leisure time. Complete circadian adaptation during a week of night shift, also seen in a similar situation on North Sea oil rigs, led to problems readapting back to day shift in winter, compared to summer. Here again timed light treatment was used to address the problem. Sleep, alertness and waking performance are critically dependent on optimum circadian phase. Circadian desynchrony is associated with increased risk of major disease in shift workers. These studies provide some groundwork for countering/avoiding circadian desynchrony in rather extreme conditions.
Address Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK. Electronic address: b.middleton@surrey.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6480 ISBN Medium
Area Expedition Conference
Notes PMID:28526480 Approved no
Call Number IDA @ john @ Serial 2248
Permanent link to this record
 

 
Author Esaki, Y.; Kitajima, T.; Obayashi, K.; Saeki, K.; Fujita, K.; Iwata, N.
Title Light exposure at night and sleep quality in bipolar disorder: the APPLE cohort study Type Journal Article
Year 2019 Publication Journal of Affective Disorders Abbreviated Journal Journal of Affective Disorders
Volume (down) 257 Issue Pages 314-320
Keywords Human Health; mood disorders; Bipolar Disorder; Sleep; sleep efficiency; sleep quality
Abstract Background

Sleep disturbance in bipolar disorder (BD) is common and is associated with a risk for mood episode recurrence. Thus, it is important to identify factors that are related to sleep disturbance in BD. This cross-sectional study investigated the association between exposure to light at night (LAN) and sleep parameters in patients with BD.

Methods

The sleep parameters of 175 outpatients with BD were recorded using actigraphy at their homes for seven consecutive nights and were evaluated using the Insomnia Severity Index (ISI). The average LAN intensity in the bedroom during bedtime and rising time was measured using a portable photometer, and the participants were divided into two groups: “Light” (≥5 lux) and “Dark” (<5 lux). The association between LAN and sleep parameters was tested with multivariable analysis by adjusting for potential confounder such as age, gender, current smoker, mood state, day length, daytime light exposure, and sedative medications.

Results

After adjusting for potential confounder, the actigraphy sleep parameters showed significantly lower sleep efficiency (mean, 80.1% vs. 83.4%; p = 0.01), longer log-transformed sleep onset latency (2.9 vs. 2.6 min; p = 0.01), and greater wake after sleep onset (51.4 vs. 41.6 min; p = 0.02) in the Light group than in the Dark group. Whereas, there were no significant differences in the ISI scores between the groups.

Limitations

This was a cross-sectional study; therefore, the results do not necessarily imply that LAN causes sleep disturbance.

Conclusions

Reducing LAN exposure may contribute to improved sleep quality in patients with BD.
Address Department of Psychiatry, Okehazama Hospital, Aichi, Japan; esakiz(at)fujita-hu.ac.jp
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0165-0327 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2561
Permanent link to this record
 

 
Author Dominoni, D.M.; Smit, J.A.H.; Visser, M.E.; Halfwerk, W.
Title Multisensory pollution: Artificial light at night and anthropogenic noise have interactive effects on activity patterns of great tits (Parus major) Type Journal Article
Year 2019 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume (down) 256 Issue Pages 113314
Keywords Animals
Abstract Urbanisation is increasing globally at a rapid pace. Consequently, wild species face novel environmental stressors associated with urban sprawl, such as artificial light at night and noise. These stressors have pervasive effects on the behaviour and physiology of many species. Most studies have singled out the impact of just one of these stressors, while in the real world they are likely to co-occur both temporally and spatially, and we thus lack a clear understanding of the combined effect of anthropogenic stressors on wild species. Here, we experimentally exposed captive male great tits (Parus major) to artificial light at night and 24 h noise in a fully factorial experiment. We then measured the effect of both these stressors on their own and their combination on the amount and timing of activity patterns. We found that both light and noise affected activity patterns when presented alone, but in opposite ways: light increased activity, particularly at night, while noise reduced it, particularly during the day. When the two stressors were combined, we found a synergistic effect on the total activity and the nighttime activity, but an antagonistic effect on daytime activity. The significant interaction between noise and light treatment also differed among forest and city birds. Indeed, we detected a significant interactive effect on light and noise on daytime, nighttime, dusktime and offset of activity of urban birds, but not of forest birds. These results suggest that both artificial light at night and anthropogenic noise can drive changes in activity patterns, but that the specific impacts depend on the habitat of origin. Furthermore, our results demonstrate that co-occurring exposure to noise and light can lead to a stronger impact at night than predicted from the additive effects and thus that multisensory pollution may be a considerable threat for wildlife.
Address Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands; avide.dominoni(at)glasgow.ac.uk
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2744
Permanent link to this record