toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Bailey, L.A.; Brigham, R.M.; Bohn, S.J.; Boyles, J.G.; Smit, B. url  doi
openurl 
  Title An experimental test of the allotonic frequency hypothesis to isolate the effects of light pollution on bat prey selection Type Journal Article
  Year 2019 Publication Oecologia Abbreviated Journal Oecologia  
  Volume (down) 190 Issue 2 Pages 367–374  
  Keywords Animals; Ecology; bats; moths; insects; mammals  
  Abstract Artificial lights may be altering interactions between bats and moth prey. According to the allotonic frequency hypothesis (AFH), eared moths are generally unavailable as prey for syntonic bats (i.e., bats that use echolocation frequencies between 20 and 50 kHz within the hearing range of eared moths) due to the moths' ability to detect syntonic bat echolocation. Syntonic bats therefore feed mainly on beetles, flies, true bugs, and non-eared moths. The AFH is expected to be violated around lights where eared moths are susceptible to exploitation by syntonic bats because moths' evasive strategies become less effective. The hypothesis has been tested to date almost exclusively in areas with permanent lighting, where the effects of lights on bat diets are confounded with other aspects of human habitat alteration. We undertook diet analysis in areas with short-term, localized artificial lighting to isolate the effects of artificial lighting and determine if syntonic and allotonic bats (i.e., bats that use echolocation frequencies outside the hearing range of eared moths) consumed more moths under conditions of artificial lights than in natural darkness. We found that syntonic bats increased their consumption of moth prey under experimentally lit conditions, likely owing to a reduction in the ability of eared moths to evade the bats. Eared moths may increase in diets of generalist syntonic bats foraging around artificial light sources, as opposed to allotonic species and syntonic species with a more specialized diet.  
  Address Department of Zoology and Entomology, Rhodes University, P.O. Box 94, Grahamstown, 6140, South Africa. b.smit@ru.ac.za  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0029-8549 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31139944 Approved no  
  Call Number GFZ @ kyba @ Serial 2511  
Permanent link to this record
 

 
Author Song, J.; Tong, X.; Wang, L.; Zhao, C.; Prishchepov, A.V. url  doi
openurl 
  Title Monitoring finer-scale population density in urban functional zones: A remote sensing data fusion approach Type Journal Article
  Year 2019 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning  
  Volume (down) 190 Issue Pages 103580  
  Keywords Remote Sensing; nighttime light; numerical methods  
  Abstract Spatial distribution information on population density is essential for understanding urban dynamics. In recent decades, remote sensing techniques have often been applied to assess population density, particularly night-time light data (NTL). However, such attempts have resulted in mapped population density at coarse/medium resolution, which often limits the applicability of such data for fine-scale territorial planning. The improved quality and availability of multi-source remote sensing imagery and location-based service data (LBS) (from mobile networks or social media) offers new potential for providing more accurate population information at the micro-scale level. In this paper, we developed a fine-scale population distribution mapping approach by combining the functional zones (FZ) mapped with high-resolution satellite images, NTL data, and LBS data. Considering the possible variations in the relationship between population distribution and nightlight brightness in functional zones, we tested and found spatial heterogeneity of the relationship between NTL and the population density of LBS samples. Geographically weighted regression (GWR) was thus implemented to test potential improvements to the mapping accuracy. The performance of the following four models was evaluated: only ordinary least squares regression (OLS), only GWR, OLS with functional zones (OLS&FZ) and GWR with functional zones (GWR&FZ). The results showed that NTL-based GWR&FZ was the most accurate and robust approach, with an accuracy of 0.71, while the mapped population density was at a unit of 30 m spatial resolution. The detailed population density maps developed in our approach can contribute to fine-scale urban planning, healthcare and emergency responses in many parts of the world.  
  Address Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark; songjinchao08(at)163.com  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-2046 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2516  
Permanent link to this record
 

 
Author Chai, B.; Seto, K.C. url  doi
openurl 
  Title Conceptualizing and characterizing micro-urbanization: A new perspective applied to Africa Type Journal Article
  Year 2019 Publication Landscape and Urban Planning Abbreviated Journal Landscape and Urban Planning  
  Volume (down) 190 Issue Pages 103595  
  Keywords Remote Sensing  
  Abstract Sustainable Development Goals (SDG) require sustainable urban development and management for better human life quality. Small urban settlements—those with fewer than 500,000 people—are home to 26.5% of the world’s population. Yet, relatively little research attention has been paid to understanding the structure and dynamics of these smaller cities. In this paper, we propose a new concept, micro-urbanization, to fill this knowledge gap, and develop a methodology to characterize and map it using dense remote sensing time series data and landscape pattern metrics. We define micro-urbanization as a process of urban land change that has five primary characteristics: small, patchy, far from main urban areas, with limited geographic connection with existing urban areas and low urban intensity. We apply the method to two rapidly urbanizing countries in Africa, Nigeria and the Democratic Republic of the Congo. Results show that the methodology is capable of detecting micro-urbanization with relatively high spatial and temporal accuracy.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0169-2046 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2581  
Permanent link to this record
 

 
Author Petržala, J.; Kocifaj, M. url  doi
openurl 
  Title Research on spectral factors towards determining nocturnal ground irradiance under overcast sky conditions in densely populated regions Type Journal Article
  Year 2017 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer  
  Volume (down) 189 Issue Pages 126-132  
  Keywords Skyglow  
  Abstract Light pollution is closely correlated with the meteorological factors, specifically cloudiness that is one of the major amplifiers of night sky radiances in urban regions. Although the decisive effects of cloud deck on artificial nighttime skyglow have been recognized experimentally, the radiative transfer modelling in a heterogeneous nocturnal environment illuminated from many light sources is a non-trivial problem that is difficult to solve both theoretically and numerically. A satisfactorily accurate evaluation of ground-reaching diffuse light is, however, an important issue as some optical properties (e.g. horizontal irradiance) are usually difficult to obtain with common instruments. Overcast sky represents a special class of situations in which clouds can act as amplifiers of the light pollution of the city.

In this paper we proceeded with a simple two-stream approach to solve the scalar radiative transfer equation (RTE) under overcast conditions. The technique we are using allows for a rapid prediction of ground irradiances in densely populated regions assuming various emission functions. We have shown that the classical RTE concept can be adopted in determining the diffuse irradiance, while the model abilities are illustrated in a set of numerical experiments for low and high turbidity states.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-4073 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2034  
Permanent link to this record
 

 
Author Ramdani, F.; Setiani, P. url  doi
openurl 
  Title Multiscale assessment of progress of electrification in Indonesia based on brightness level derived from nighttime satellite imagery Type Journal Article
  Year 2017 Publication Environmental Monitoring and Assessment Abbreviated Journal Environ Monit Assess  
  Volume (down) 189 Issue 6 Pages 249  
  Keywords Remote Sensing  
  Abstract Availability of electricity can be used as an indicator to proximate parameters related to human well-being. Overall, the electrification process in Indonesia has been accelerating in the past two decades. Unfortunately, monitoring the country's progress on its effort to provide wider access to electricity poses challenges due to inconsistency of data provided by each national bureau, and limited availability of information. This study attempts to provide a reliable measure by employing nighttime satellite imagery to observe and to map the progress of electrification within a duration of 20 years, from 1993 to 2013. Brightness of 67,021 settlement-size points in 1993, 2003, and 2013 was assessed using data from DMSP/OLS instruments to study the electrification progress in the three service regions (Sumatera, Java-Bali, and East Indonesia) of the country's public electricity company, PLN. Observation of all service areas shows that the increase in brightness, which correspond with higher electricity development and consumption, has positive correlation with both population density (R(2) = 0.70) and urban change (R(2) = 0.79). Moreover, urban change has a stronger correlation with brightness, which is probably due to the high energy consumption in urban area per capita. This study also found that the brightness in Java-Bali region is very dominant, while the brightness in other areas has been lagging during the period of analysis. The slow development of electricity infrastructure, particularly in major parts of East Indonesia region, affects the low economic growth in some areas and formed vicious cycle.  
  Address Environmental Engineering, Faculty of Agricultural Engineering, Brawijaya University, Malang, Indonesia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0167-6369 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:28466451 Approved no  
  Call Number GFZ @ kyba @ Serial 2490  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: