toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Muztaba, R.; Saryantono, B.; Putri, A.N.I.; Pratiwi, T.D. url  doi
openurl 
  Title Zenithal sky glow measurement in Bandar Lampung as consideration in drafting the regulation of light pollution-free areas around the Lampung Astronomical Observatory (LAO) Type Journal Article
  Year 2019 Publication Journal of Physics: Conference Series Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume (down) 1231 Issue Pages 012023  
  Keywords Skyglow  
  Abstract Urban development to big cities generally will be accompanied by excessive use of artificial light, such as street lamps, billboards, and building lighting systems. Ineffective and incorrect lighting installation design causes environmental degradation, i.e light pollution. Today, light pollution is one indicator of environmental degradation and energy waste behavior. Study on light pollution has progressed in many fields of science, extending from traditional fields of astronomy to atmospheric physics, environmental science, natural science, and social life. Measurement of sky brightness is also an indicator of the feasibility of an observatory development plan. The location of the observatory is located at coordinates latitude -05° 27' 71'' and longitude 105° 09' 39'' with a height of 1030 above mean sea level. The construction of an observatory requires a study of the sky's brightness conditions as a matter of consideration to obtain the best observation result. Therefore, to support the Lampung Provincial Government, Institut Teknologi Sumatera (ITERA) and Institut Teknologi Bandung (ITB) in carrying out the construction of observatories in TAHURA WAR, Gunung Betung, Lampung. We did the sky brightness measurements as far as 15 km from the location point of the observatory. We use SQM to measure the brightness of the sky towards the zenith in every crowded area in the city of Bandar Lampung. Then, from the measurement results, we make a map of light pollution. From the mapping results, there are four locations that are indicated to be contaminated by light pollution, namely Tanjung Senang, Teluk Betung, Kemiling, and Gedong Tataan with respective values of 15.8 mpas, 16.6 mpas, 16.8 mpas, and 17.00 mpas.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2569  
Permanent link to this record
 

 
Author Admiranto, A.G.; Priyatikanto, R.; Maryam, S.; Ellyyani,; Suryana, N. url  doi
openurl 
  Title Preliminary Report of Light Pollution in Indonesia Based on Sky Quality Observation Type Journal Article
  Year 2019 Publication Journal of Physics: Conference Series Abbreviated Journal J. Phys.: Conf. Ser.  
  Volume (down) 1231 Issue Pages 012017  
  Keywords Skyglow  
  Abstract We observed night sky quality in several LAPAN stations (Agam, Bandung, Pontianak, Sumedang, Garut, Pasuruan, and Biak) which were conducted from April until July 2018 using Unihedron Sky Quality Meter LU-DL type. Observational data from all of the observational points were then sent regularly to a centralized database for further use. Although most of the measurements were done in overcast conditions, we were able to determine the representative clear sky brightness statistically. The results showed that the light pollution level of the most of the stations are moderate (the values at Biak, Agam, Sumedang, and Pontianak are 20.0, 19.5, 19.6, and 17.7 mpsas respectively) and the stations which are located near or in cities are high (Bandung and Pasuruan with 17.1 and 18.0 mpsas, respectively). In a particular station (Garut) the light pollution is low (20.6 mpsas), so it is good to make this spot to be a location of astrotourism.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1742-6588 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2570  
Permanent link to this record
 

 
Author Kozaki, T.; Hidaka, Y.; Takakura, J.-Y.; Kusano, Y. url  doi
openurl 
  Title Salivary melatonin suppression under 100-Hz flickering blue light and non-flickering blue light conditions Type Journal Article
  Year 2020 Publication Neuroscience Letters Abbreviated Journal Neurosci Lett  
  Volume (down) 722 Issue Pages 134857  
  Keywords Human Health; Flickering light; Intrinsically photosensitive retinal ganglion cell; Light; Light emitting diode; Melatonin  
  Abstract Bright light at night has been known to suppress melatonin secretion. Photoreceptors, known as intrinsically photosensitive retinal ganglion cells (ipRGCs), project dark/bright information into the superchiasmatic nucleus, which regulates the circadian system. Electroretinograms of ipRGCs show fluctuation that is synchronized with light ON-OFF stimulation. This finding suggests that the flickering condition of light may have an impact on our circadian system. In this study, we evaluate light-induced melatonin suppression under flickering and non-flickering light conditions. Fifteen male subjects between the ages of 20 and 23 years (mean +/- SD, 21.9 +/- 1.9) were exposed to three light conditions (dim, 100-Hz flickering and non-flickering light) from 1:00 a.m. to 2:30 a.m. Saliva samples were taken just before 1:00 and at 1:15, 1:30, 2:00, and 2:30 a.m. Repeated-measure t-test with Bonferroni correction showed a significant decrease in melatonin levels under both 100-Hz and non-flickering light conditions compared to dim light conditions after 2:00 a.m. Moreover, at 2:30 a.m., the rate of change in melatonin level under 100 Hz of flickering light was significantly lower than that under non-flickering light. Our present findings suggest that 100-Hz flickering light may suppress melatonin secretion more than non-flickering light.  
  Address Department of Health and Nutrition Sciences, Nishikyushu University, 4490-9 Osaki, Kanzaki, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0304-3940 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:32097701 Approved no  
  Call Number GFZ @ kyba @ Serial 2855  
Permanent link to this record
 

 
Author Xue, X.; Lin, Y.; Zheng, Q.; Wang, K.; Zhang, J.; Deng, J.; Abubakar, G.A.; Gan, M. url  doi
openurl 
  Title Mapping the fine-scale spatial pattern of artificial light pollution at night in urban environments from the perspective of bird habitats Type Journal Article
  Year 2019 Publication The Science of the Total Environment Abbreviated Journal Sci Total Environ  
  Volume (down) 702 Issue Pages 134725  
  Keywords Remote Sensing; Animals; ALAN pollution; Circuitscape; Land cover; Nighttime light image; Urban ecology  
  Abstract The increase in artificial light at night (ALAN) is a global concern, while the pattern of ALAN pollution inside urban areas has not yet been fully explored. To fill this gap, we developed a novel method to map fine-scale ALAN pollution patterns in urban bird habitats using high spatial resolution ALAN satellite data. First, an ALAN pollution map was derived from JL1-3B satellite images. Then, the core habitat nodes (CHNs) representing the main habitats for urban birds to inhabit were identified from the land cover map, which was produced using Gaofen2 (GF2) data, and the high probability corridors (HPCs), indicating high connectivity paths, were derived from Circuitscape software. Finally, the ALAN patterns in the CHNs and HPCs were analysed, and the mismatch index was proposed to evaluate the trade-off between human activity ALAN demands and ALAN supply for the protection of urban birds. The results demonstrated that 115 woodland patches covering 4149.0ha were selected as CHNs, and most of the CHNs were large urban parks or scenic spots located in the urban fringe. The 2923 modelled HPCs occupying 1179.2ha were small remaining vegetation patches and vegetated corridors along the major transport arteries. The differences in the ALAN pollution patterns between CHNs and HPCs were mainly determined by the characteristics of the green space patches and the light source types. The polluted regions in the CHNs were clustered in a few regions that suffered from concentrated and intensive ALAN, while most of the CHNs remained unaffected. In contrast, the 727 HPCs were mainly polluted by street lighting was scattered and widely distributed, resulting a more varying influence to birds than that in the CHNs. Relating patterns of the ALAN to bird habitats and connectivity provides meaningful information for comprehensive planning to alleviate the disruptive effects of ALAN pollution.  
  Address College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China. Electronic address: ganmuye@zju.edu.cn  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31734607 Approved no  
  Call Number GFZ @ kyba @ Serial 2765  
Permanent link to this record
 

 
Author Vanbergen, A.J.; Potts, S.G.; Vian, A.; Malkemper, E.P.; Young, J.; Tscheulin, T. url  doi
openurl 
  Title Risk to pollinators from anthropogenic electro-magnetic radiation (EMR): Evidence and knowledge gaps Type Journal Article
  Year 2019 Publication Science of The Total Environment Abbreviated Journal Science of The Total Environment  
  Volume (down) 695 Issue Pages 133833  
  Keywords Animals; Ecology; review; anthropogenic radiofrequency electromagnetic radiation; AREMR; bees; Apis mellifera; pollinators  
  Abstract Worldwide urbanisation and use of mobile and wireless technologies (5G, Internet of Things) is leading to the proliferation of anthropogenic electromagnetic radiation (EMR) and campaigning voices continue to call for the risk to human health and wildlife to be recognised. Pollinators provide many benefits to nature and humankind, but face multiple anthropogenic threats. Here, we assess whether artificial light at night (ALAN) and anthropogenic radiofrequency electromagnetic radiation (AREMR), such as used in wireless technologies or emitted from power lines, represent an additional and growing threat to pollinators. A lack of high quality scientific studies means that knowledge of the risk to pollinators from anthropogenic EMR is either inconclusive, unresolved, or only partly established. A handful of studies provide evidence that ALAN can alter pollinator communities, pollination and fruit set. Laboratory experiments provide some, albeit variable, evidence that the honey bee Apis mellifera and other invertebrates can detect EMR, potentially using it for orientation or navigation, but they do not provide evidence that AREMR affects insect behaviour in ecosystems. Scientifically robust evidence of AREMR impacts on abundance or diversity of pollinators (or other invertebrates) are limited to a single study reporting positive and negative effects depending on the pollinator group and geographical location. Therefore, whether anthropogenic EMR (ALAN or AREMR) poses a significant threat to insect pollinators and the benefits they provide to ecosystems and humanity remains to be established.  
  Address Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France; adam.vanbergen(at)inra.fr  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0048-9697 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2613  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: