toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Wilson, P.; Thums, M.; Pattiaratchi, C.; Meekan, M.; Pendoley, K.; Fisher, R.; Whiting, S. url  doi
openurl 
  Title Artificial light disrupts the nearshore dispersal of neonate flatback turtles Natator depressus Type Journal Article
  Year 2018 Publication Marine Ecology Progress Series Abbreviated Journal Mar. Ecol. Prog. Ser.  
  Volume (down) 600 Issue Pages 179-192  
  Keywords Animals  
  Abstract After emerging from nests, neonate sea turtles entering the water are thought to orientate away from shore using wave cues to guide them out to sea. Artificial light may interfere with this process, but the relative importance of natural and anthropogenic cues to the dispersal of hatchlings is unknown. Here, we used acoustic telemetry to track the movement of flatback turtle (Natator depressus) hatchlings dispersing through nearshore waters. Turtles dispersed in the presence and absence of artificial light through a receiver array where a range of oceanographic variables were measured. Turtle tracks were analysed using a full subsets Generalised Additive Mixed Model approach to identify the most important cues influencing the bearing, variance in bearing (a measure of the ability to orientate directly), rate of travel and time spent in the array. Artificial light reduced their swim speed by up to 30%, increased the amount of time spent in nearshore waters (by 50–150%) and increased the variance in bearing (100–180% more variable), regardless of oceanographic conditions. Under ambient conditions, ocean currents affected the bearing of hatchlings as they left the shore, but when light was present, this effect was diminished, showing turtles actively swam against currents in their attempts to move towards light. After accounting for the effects of currents on hatchlings dispersing under ambient conditions, turtles swam offshore by moving perpendicular to the coastline and did not appear to orient into incident wave direction. Overall, light disrupted the dispersal of hatchlings causing them to linger, become disoriented in the near shore and expend energy swimming against ocean currents.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0171-8630 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 1967  
Permanent link to this record
 

 
Author Youngstedt, S.D.; Elliott, J.A.; Kripke, D.F. url  doi
openurl 
  Title Human Circadian Phase-Response Curves for Exercise Type Journal Article
  Year 2019 Publication The Journal of Physiology Abbreviated Journal J Physiol  
  Volume (down) 597 Issue 8 Pages 2253-2268  
  Keywords Human Health; Circadian Rhythm; Exercise  
  Abstract KEY POINTS: Exercise elicits circadian phase-shifting effects, but additional information is needed. The phase-response curve describing the magnitude and direction of circadian rhythm phase shifts depending on the time of the zeigeber (time cue) stimulus is the most fundamental chronobiological tool for alleviating circadian misalignment and related morbidity. 51 older and 48 young adults followed a circadian rhythms measurement protocol for up to 5.5 days, and performed 1 h of moderate treadmill exercise for 3 consecutive days at one of 8 times of day/night. Temporal changes in the phase of 6-sulphatoxymelatonin (aMT6s) were measured from evening onset, cosine acrophase, morning offset, and duration of excretion, establishing significant PRCs for aMT6 onset and acrophase with large phase delays from 7-10 PM and large phase advances at both 7 AM and 1-4 PM. Along with known synergism with bright light, the above PRCs with a second phase advance region (afternoon) could support both practical and clinical applications. ABSTRACT: Although bright light is regarded as the primary circadian zeitgeber, its limitations support exploring alternative zeitgebers. Exercise elicits significant circadian phase-shifting effects, but fundamental information regarding these effects is needed. The primary aim of this study was to establish phase-response curves (PRC) documenting the size and direction of phase shifts in relation to the circadian time of exercise. Aerobically fit older (n = 51, 59-75 y) and young adults (n = 48, 18-30 y) followed a 90-min laboratory ultra-short sleep wake cycle (60 min wake/30 min sleep) for up to 5 (1/2) days. At the same clock time on three consecutive days, each participant performed 60 min of moderate treadmill exercise (65-75% of heart rate reserve) at one of 8 times of day/night. To describe PRCs, phase shifts were measured for the cosine-fitted acrophase of urinary 6-sulphatoxymelatonin (aMT6s), as well as for the evening rise, morning decline, and change in duration of aMT6s excretion. Significant PRCs were found for aMT6s acrophase, onset and duration, with peak phase advances corresponding to clock times of 7 AM and 1PM-4PM, delays from 7 PM-10 PM, and minimal shifts around 4 PM and 2 AM. There were no significant age or sex differences. The amplitudes of the aMT6s onset and acrophase PRCs are comparable to expectations for bright light of equal duration. The phase advance to afternoon exercise and the exercise-induced PRC for change in aMT6s duration are novel findings. The results support further research exploring additive phase shifting effects of bright light and exercise and health benefits. This article is protected by copyright. All rights reserved.  
  Address Department of Psychiatry, University of California, San Diego, CA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0022-3751 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:30784068 Approved no  
  Call Number GFZ @ kyba @ Serial 2230  
Permanent link to this record
 

 
Author Strobl, E. url  openurl
  Title The Impact of Typhoons on Economic Activity in the Philippines: Evidence from Nightlight Intensity Type Journal Article
  Year 2019 Publication ADB Economics Working Paper Series Abbreviated Journal  
  Volume (down) 589 Issue Pages  
  Keywords Remote Sensing  
  Abstract We quantify the economic impact of typhoons in the Philippines. To this end we construct a panel data set of local economic activity derived from nightlight intensity satellite images and a cell level measure of typhoon damage constructed from storm track data, a wind field model, and a stylized damage function. Our econometric results reveal that there is a statistically and potentially economically significant, albeit short- lived, impact of typhoon destruction on local economic activity. Constructing risk profiles from a 60-year historical set of storms suggests that (near) future losses in economic activity for frequent (5-year return period) and rare (50-year return period) events are likely

to range from between 1.0% and 2.5%.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ intern @ Serial 2641  
Permanent link to this record
 

 
Author Acuto, M. url  doi
openurl 
  Title We need a science of the night Type Journal Article
  Year 2019 Publication Nature Abbreviated Journal Nature  
  Volume (down) 576 Issue 7787 Pages 339  
  Keywords *Policy; *Society; *Commentary  
  Abstract (none)  
  Address Connected Cities Lab, University of Melbourne; michele.acuto(at)unimelb.edu.au  
  Corporate Author Thesis  
  Publisher Springer Nature Place of Publication Editor  
  Language English Summary Language English Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31853076 Approved no  
  Call Number IDA @ john @ Serial 2792  
Permanent link to this record
 

 
Author Manoli, G.; Fatichi, S.; Schlapfer, M.; Yu, K.; Crowther, T.W.; Meili, N.; Burlando, P.; Katul, G.G.; Bou-Zeid, E. url  doi
openurl 
  Title Magnitude of urban heat islands largely explained by climate and population Type Journal Article
  Year 2019 Publication Nature Abbreviated Journal Nature  
  Volume (down) 573 Issue 7772 Pages 55-60  
  Keywords Remote Sensing  
  Abstract Urban heat islands (UHIs) exacerbate the risk of heat-related mortality associated with global climate change. The intensity of UHIs varies with population size and mean annual precipitation, but a unifying explanation for this variation is lacking, and there are no geographically targeted guidelines for heat mitigation. Here we analyse summertime differences between urban and rural surface temperatures (DeltaTs) worldwide and find a nonlinear increase in DeltaTs with precipitation that is controlled by water or energy limitations on evapotranspiration and that modulates the scaling of DeltaTs with city size. We introduce a coarse-grained model that links population, background climate, and UHI intensity, and show that urban-rural differences in evapotranspiration and convection efficiency are the main determinants of warming. The direct implication of these nonlinearities is that mitigation strategies aimed at increasing green cover and albedo are more efficient in dry regions, whereas the challenge of cooling tropical cities will require innovative solutions.  
  Address Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ, USA  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0028-0836 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31485056 Approved no  
  Call Number GFZ @ kyba @ Serial 2669  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: