toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Kocifaj, M.; Kundracik, F.; Bilý, O. url  doi
openurl 
  Title Emission spectra of light-pollution sources determined from the light-scattering spectrometry of the night sky Type Journal Article
  Year 2020 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume (down) 491 Issue 4 Pages 5586-5594  
  Keywords Skyglow; Remote Sensing  
  Abstract The emission spectrum of a light-pollution source is a determining factor for modelling artificial light at night. The spectral composition of skyglow is normally derived from the initial spectra of all artificial light sources contributing to the diffuse illumination of an observation point. However, light scattering in the ambient atmosphere imposes a wavelength-specific distortion on the optical signals captured by the measuring device. The nature of the emission, the spectra and the light-scattering phenomena not only control the spectral properties of the ground-reaching radiation, but also provide a unique tool for remote diagnosis and even identification of the emission spectra of the light-polluting sources. This is because the information contained in the night-sky brightness is preferably measured in directions towards a glowing dome of light over the artificial source of light. We have developed a new method for obtaining the emission spectra using remote terrestrial sensing of the bright patches of sky associated with a source. Field experiments conducted in Vienna and Bratislava have been used to validate the theoretical model and the retrieval method. These experiments demonstrate that the numerical inversion is successful even if the signal-to-noise ratio is small. The method for decoding the emission spectra by the light-scattering spectrometry of a night sky is a unique approach that enables for (i) a systematic characterization of the light-pollution sources over a specific territory, and (ii) a significant improvement in the numerical prediction of skyglow changes that we can expect at observatories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2793  
Permanent link to this record
 

 
Author Kocifaj, M.; Bará, S. url  doi
openurl 
  Title Two-index model for characterizing site-specific night sky brightness patterns Type Journal Article
  Year 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume (down) 490 Issue 2 Pages 1953-1960  
  Keywords Skyglow  
  Abstract The determination of the all-sky radiance distribution produced by artificial light sources is a computationally demanding task that generally requires intensive calculations. In this paper, we develop an analytical formulation that provides the all-sky radiance distribution produced by an artificial light source as an explicit and analytical function of the observation direction, depending on two single parameters that characterize the overall effects of the atmosphere. One of these parameters is related to the effective attenuation of the light beams, whereas the other accounts for the overall asymmetry of the combined scattering processes in molecules and aerosols. Using this formulation, a wide range of all-sky radiance distributions can be efficiently and accurately calculated in a short time. This substantial reduction in the number of required parameters, in comparison with other approaches that are currently used, is expected to facilitate the development of new applications in the field of light pollution research.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2704  
Permanent link to this record
 

 
Author Kocifaj, M.; Wallner, S.; Solano-Lamphar, H.A. url  doi
openurl 
  Title An asymptotic formula for skyglow modelling over a large territory Type Journal Article
  Year 2019 Publication Monthly Notices of the Royal Astronomical Society Abbreviated Journal  
  Volume (down) 485 Issue 2 Pages 2214-2224  
  Keywords Skyglow  
  Abstract An analytical framework to predict skyglow due to distant sources is presented, which can be applied to model sky brightness from the zenith toward the horizon along a vertical plane crossing the hemisphere in the azimuthal position of a light source. Although various powerful algorithms have been developed over the last few decades, the time needed for calculation grows exponentially with increasing size of the modelling domain. This is one of the key issues in skyglow computations, because the numerical accuracy improves only slowly as the modelling domain extends. We treat the problem theoretically, by introducing an analytical formula that is well-suited for light sources located at intermediate and long distances from an observation point and allows tremendous time savings in numerical analyses, while keeping the error at a low level. Field experiments carried out in Eastern Austria provided a unique opportunity to validate the model using real-sky luminance data. The fact that the theoretical model allows the prediction of sky luminance within an acceptable error tolerance is not only in line with the experimental data, but also provides new means of remote characterization of light emissions from artificial sources. The method is particularly attractive for rapid and simple retrieval of the amount of light escaping upwards from the dominant light sources surrounding the observation point. We expect that the method can advance the numerical modelling of skyglow substantially, because it allows real-time computations for very large territories.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0035-8711 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2258  
Permanent link to this record
 

 
Author Kennard, D.C.; Chamberlin, V.D. url  openurl
  Title All-night Light for Layers Type Report
  Year 1931 Publication Abbreviated Journal  
  Volume (down) Bulletin 476 Issue Pages  
  Keywords Animals  
  Abstract  
  Address  
  Corporate Author Ohio Agricultural Experiment Station Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2392  
Permanent link to this record
 

 
Author Yao, J.Q.; Zhai, H.R.; Tang, X.M.; Gao, X.M.; Yang, X.D. url  doi
openurl 
  Title Amazon Fire Monitoring and Analysis Based on Multi-source Remote Sensing Data Type Journal Article
  Year 2020 Publication IOP Conference Series: Earth and Environmental Science Abbreviated Journal IOP Conf. Ser.: Earth Environ. Sci.  
  Volume (down) 474 Issue Pages 042025  
  Keywords Remote Sensing  
  Abstract In August 2019, a large-scale fire broke out in the Amazon rainforest, bringing serious harm to the ecosystem and human beings. In order to accurately monitor the dynamic change of forest fire in Amazon rainforest and analyse the impact of fire spreading and extinction on the environment, firstly, based on NPP VIIRS data covering the Amazon fire area, the sliding window threshold method is adopted to extract the fire point, and the cause of fire change is monitored and analysed according to the time series. Secondly, based on the time series of CALIPSO data, the vertical distribution changes of atmospheric pollutants in the amazon fire area are analysed, and the comprehensive analysis is carried out by combining NPP VIIRS data. The experimental results show that only NPP VIIRS data is used to predict the fire, and the combination of CALIPSO data can better monitor the forest fire and predict the fire development trend. The combination of optical image and laser radar has greater advantages in dynamic fire monitoring and fire impact analysis. The method described in this paper can provide basic data reference for real-time and accurate prediction of forest fires and provide new ideas for dynamic fire monitoring.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1755-1315 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number GFZ @ kyba @ Serial 2927  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: