|   | 
Details
   web
Records
Author Alzahrani, H.S.; Khuu, S.K.; Roy, M.
Title Modelling the effect of commercially available blue-blocking lenses on visual and non-visual functions Type Journal Article
Year 2019 Publication Clinical & Experimental Optometry Abbreviated Journal Clin Exp Optom
Volume (up) in press Issue Pages cxo.12959
Keywords Human Health; blue-blocking lenses; non-visual functions; transmittance; visual functions
Abstract BACKGROUND: Blue-blocking lenses (BBLs) are marketed as providing retinal protection from acute and cumulative exposure to blue light over time. The selective reduction in visible wavelengths transmitted through BBLs is known to influence the photosensitivity of retinal photoreceptors, which affects both visual and non-visual functions. This study measured the spectral transmittance of BBLs and evaluated their effect on blue perception, scotopic vision, circadian rhythm, and protection from photochemical retinal damage. METHODS: Seven different types of BBLs from six manufacturers and untinted control lenses with three different powers (+2.00 D, -2.00 D and Plano) were evaluated. The whiteness index of BBLs used in this study was calculated using Commission International de l'Eclairage (CIE) Standard Illuminates D65, and CIE 1964 Standard with a 2 degrees Observer. The protective qualities of BBLs and their effect on blue perception, scotopic vision, and circadian rhythm were evaluated based on their spectral transmittance, which was measured with a Cary 5,000 UV-Vis-NIR spectrophotometer. RESULTS: BBLs were found to reduce blue light (400-500 nm) by 6-43 per cent, providing significant protection from photochemical retinal damage compared to control lenses (p </= 0.05). All BBLs were capable of reducing the perception of blue colours, scotopic sensitivities and circadian sensitivities by 5-36 per cent, 5-24 per cent, and 4-27 per cent, respectively depending on the brand and power of the lens. CONCLUSION: BBLs can provide some protection to the human eye from photochemical retinal damage by reducing a portion of blue light that may affect visual and non-visual performances, such as those critical to scotopic vision, blue perception, and circadian rhythm.
Address School of Optometry and Vision Science, The University of New South Wales, Sydney, Australia
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0816-4622 ISBN Medium
Area Expedition Conference
Notes PMID:31441122 Approved no
Call Number GFZ @ kyba @ Serial 2654
Permanent link to this record
 

 
Author Ahn, H.; Lee, S.; Jo, E.
Title Assessment on Lighting Management Zones for Light pollution in Gwangju Metropolitan City Type Journal Article
Year 2018 Publication 한국태양에너지학회 학술대회논문집 Abbreviated Journal
Volume (up) Issue Pages
Keywords Lighting; Planning
Abstract
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1960
Permanent link to this record
 

 
Author Dominoni, D.M.; de Jong, M.; Bellingham, M.; O'Shaughnessy, P.; van Oers, K.; Robinson, J.; Smith, B.; Visser, M.E.; Helm, B.
Title Dose-response effects of light at night on the reproductive physiology of great tits (Parus major): Integrating morphological analyses with candidate gene expression Type Journal Article
Year 2018 Publication Journal of Experimental Zoology. Part A, Ecological and Integrative Physiology Abbreviated Journal J Exp Zool A Ecol Integr Physiol
Volume (up) in press Issue Pages in press
Keywords Animals
Abstract Artificial light at night (ALAN) is increasingly recognized as a potential threat to wildlife and ecosystem health. Among the ecological effects of ALAN, changes in reproductive timing are frequently reported, but the mechanisms underlying this relationship are still poorly understood. Here, we experimentally investigated these mechanisms by assessing dose-dependent photoperiodic responses to ALAN in the great tit (Parus major). We individually exposed photosensitive male birds to one of three nocturnal light levels (0.5, 1.5, and 5 lux), or to a dark control. Subsequent histological and molecular analyses on their testes indicated a dose-dependent reproductive response to ALAN. Specifically, different stages of gonadal growth were activated after exposure to different levels of light at night. mRNA transcript levels of genes linked to the development of germ cells (stra8 and spo11) were increased under 0.5 lux compared to the dark control. The 0.5 and 1.5 lux groups showed slight increases in testis size and transcript levels associated with steroid synthesis (lhr and hsd3b1) and spermatogenesis (fshr, wt1, sox9, and cldn11), although spermatogenesis was not detected in histological analysis. In contrast, all birds under 5 lux had 10 to 30 times larger testes than birds in all other groups, with a parallel strong increase in mRNA transcript levels and clear signs of spermatogenesis. Across treatments, the volume of the testes was generally a good predictor of testicular transcript levels. Overall, our findings indicate that even small changes in nocturnal light intensity can increase, or decrease, effects on the reproductive physiology of wild organisms.
Address GELIFES, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2471-5638 ISBN Medium
Area Expedition Conference
Notes PMID:30058288 Approved no
Call Number GFZ @ kyba @ Serial 1964
Permanent link to this record
 

 
Author Shirkey, R. C.
Title A Model for Nighttime Urban Illumination Type Journal Article
Year 2006 Publication Abbreviated Journal
Volume (up) Issue Pages
Keywords Skyglow
Abstract The Army increasingly relies on night operations to accomplish its objectives. These night operations frequently require using Night Vision Goggles and other light-sensitive devices which are strongly affected by ambient lighting, a large component of which is urban. An urban illumination model is proposed for use in tactical decision aids and wargames which would allow for more accurate prediction of target acquisition ranges and increased realism in simulations. This model will build on previous research that predicts broadband brightness as a function of population and distance from the city center. Since city population and aerosols affect light distributions, the model is being extended and generalized for multiple city types and natural and man-made aerosols. An overview of the model along with future improvements will be presented.
Address
Corporate Author ARMY RESEARCH LAB WHITE SANDS MISSILE RANGE NM COMPUTATIONAL AND INFORMATION SCIENCE DIRECTORATE Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes ADA497505 Approved no
Call Number GFZ @ kyba @ Serial 1977
Permanent link to this record
 

 
Author Jung, B.; Inanici, M.
Title Measuring circadian lighting through high dynamic range photography Type Journal Article
Year 2018 Publication Lighting Research & Technology Abbreviated Journal Lighting Research & Technology
Volume (up) in press Issue Pages in press
Keywords Instrumentation; Human Health
Abstract The human ocular system functions in a dual manner. While the most well-known function is to facilitate vision, a growing body of research demonstrates its role in resetting the internal body clock to synchronize with the 24-hour daily cycle. Most research on circadian rhythms is performed in controlled laboratory environments. Little is known about the variability of circadian light within the built and natural environments. Currently, very few specialized devices measure the circadian light, and they are not accessible to many researchers and practitioners. In this paper, tristimulus colour calibration procedures for high dynamic range photography are developed to measure circadian lighting. Camera colour accuracy is evaluated through CIE trichromatic (XYZ) measurements; and the results demonstrate a strong linear relationship between the camera recordings and a scientific-grade colorimeter. Therefore, it is possible to correct for the colour aberrations and use high dynamic range photographs to measure both photopic and circadian lighting values. Spectrophotometric measurements are collected to validate the methodology. Results demonstrate that measurements from high dynamic range photographs can correspond to the physical quantity of circadian luminance with reasonable precision and repeatability. Circadian data collected in built environments can be utilized to study the impact of design decisions on human circadian entrainment and to create guidelines and metrics for designing circadian friendly environments.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 1979
Permanent link to this record