|   | 
Details
   web
Records
Author Singhal, R. K., Kumar, M., & Bose, B.
Title Ecophysiological Responses of Artificial Night Light Pollution in Plants Type Journal Article
Year 2018 Publication Russian Journal of Plant Physiology Abbreviated Journal
Volume (up) Issue Pages
Keywords Plants
Abstract Early in the 20th century, disparate human developmental processes culminate excess artificial light during night time and distort the phenological, physiological and ecological responses, which are sustained in the plants, animals and microorganism from millions of years. Earlier studies regarding artificial light (AL) during the night predominantly covered the drastic effects on animal systems. Although, drastic effects of AL during night time are enormous; therefore, the present topic is focused on the physiological and ecological consequences of artificial night light pollution (ANLP) on plant systems. In these consequences, most of the plant processes under ANLP are affected intensely and cause compelling changes in plant life cycle from germination to maturity. However, severe effects were observed in the case of pollination, photoreceptor signalling, flowering and microhabitats of plants. Along with drastic effects on ecology and environments, its relevance to human developmental processes cannot be avoided. Therefore, we need to equipoise between sustainable environment and steadily human development processes. Further, selection of plant/crop species, which are more responsive to ANLP, can minimize the ecological consequences of night light pollution. Likewise, changing artificial nightscape with the implication of new LEDs (Light Emitting Diodes) lightening policies like UJALA (www.ujala.gov.in), which are low cost, more durable, eco-friendly and less emitter of CO2, have potential to overcome the biodiversity threats, which arise due to old artificial lightening technology from decades. Hence, adopting new advance artificial lightening technology and understanding its impact on plant ecosystem will be a future challenge for plant biologist.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2352
Permanent link to this record
 

 
Author Neale, W., Marr, J., McKelvey, N., & Kuzel, M.
Title Nighttime Visibility in Varying Moonlight Conditions Type Journal Article
Year 2019 Publication SAE Technical Paper 2019-01-1005 Abbreviated Journal
Volume (up) Issue Pages
Keywords Public Safety; Moonlight; Vision
Abstract When the visibility of an object or person in the roadway from a driver’s perspective is an issue, the potential effect of moonlight is sometimes questioned. To assess this potential effect, methods typically used to quantify visibility were performed during conditions with no moon and with a full moon. In the full moon condition, measurements were collected from initial moon rise until the moon reached peak azimuth. Baseline ambient light measurements of illumination at the test surface were measured in both no moon and full moon scenarios. Additionally, a vehicle with activated low beam headlamps was positioned in the testing area and the change in illumination at two locations forward of the vehicle was recorded at thirty-minute intervals as the moon rose to the highest position in the sky. Also, two separate luminance readings were recorded during the test intervals, one location 75 feet in front and to the left of the vehicle, and another 150 feet forward of the vehicle. These luminance readings yielding the change in reflected light attributable to the moon. In addition to the quantitative measurement of light contributed by the moon, documentation to the change in visibility of objects and pedestrians located on the roadway were documented through photographs. Calibrated nighttime photographs were taken from the driver’s perspective inside the vehicle with low beam headlamps activated. The photographs were analyzed after testing to determine how the light intensity of the pixels in the photographs changed at each thirty-minute interval due to the additional light contribution from the moon. The results of this testing indicate that the quantifiable change in visibility distance attributable to added moonlight was negligible, and in real-world driving situations, the effect of additional illumination from a full moon would be unlikely to affect the detection of an object or pedestrian in or near the travel lane of the roadway.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2355
Permanent link to this record
 

 
Author Arnott, J. T.
Title Growth Response of White and Englemann Spruce Seedlings to Extended Photoperiod Using Three Light Intensities Type Report
Year 1982 Publication Technical Report: Pacific Forestry Centre Abbreviated Journal
Volume (up) Issue Pages
Keywords Plants
Abstract Four seedlots of white spruce (Picea glauca (Moench) Voss) and three of Engelmann spruce (Picea engelmannii Parry), covering a range of 10 degrees of latitude and a range of altitudes, were sown in BC/ CFS Styroblocks and grown in a heated greenhouse and an unheated shadehouse, using incandescent light to provide a 19-h photoperiod. Four intensities of lighting were used: 0, 100,200, and 400 Ix. A second experiment with the same seedlots was conducted in growth rooms that were programmed to evaluate the effect of low night temperature on seedling shoot growth when the photoperiod was extended to 19 h, using a light intensity of 200 Ix.

Shoot length of white and Engelmann spruce seedlings grown under an extended daylength of 100 Ix were significantly taller than the control (0 Ix). There were no significant differences in shoot length or weight among the three intensities of light used to extend the photoperiod for all seedlots except the southern latitude-low elevation population of Engelmann spruce. The more northern populations of white spruce and the high altitude populations of Engelmann spruce did not require light intensities higher than 100 Ix to maintain apical growth. Low night temperature (7°C) did produce significantly smaller seedlings than the warm night (1SoC) regime. However, terminal resting buds of seedlings grown under the cool night regime did not form any sooner than on those seedlings grown under warm nights.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2372
Permanent link to this record
 

 
Author Lumsden, P. J., & Furuya, M.
Title Evidence for Two Actions of Light in the Photoperiodic Induction of Flowering in <italic>Pharbitis nil</italic> Type Journal Article
Year 1986 Publication Plant and Cell Physiology Abbreviated Journal
Volume (up) Issue Pages
Keywords Plants
Abstract Using one-day-old light-grown seedlings of Pharbitis nil we have shown that there are two distinct responses to light during the inductive dark period. The first is the classic night-break, which inhibits flowering at a specific stage of the circadian rhythm (assumed to be the basis of dark time measurement). The second action is to control the phase of this rhythm. The two responses were compared at the 6th and 8th hour of darkness. They differed in their dose responses, and by using very short exposures it was possible to achieve one response without the other. The response of the rhythm to light displayed characteristics of other circadian rhythms; the direction and sensitivity of the phase shift changed between the 6th and 8th h, the rhythm was reset by longer exposures to light, and with one critical light treatment at the appropriate phase, the rhythm was apparently abolished. These results offer direct support for an external coincidence model in the photoperiodic control of floral induction.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1471-9053 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ intern @ Serial 2375
Permanent link to this record
 

 
Author Peña-García, A.; Sędziwy, A.
Title Optimizing Lighting of Rural Roads and Protected Areas with White Light: A Compromise among Light Pollution, Energy Savings, and Visibility Type Journal Article
Year 2019 Publication Leukos Abbreviated Journal Leukos
Volume (up) in press Issue Pages 15502724.2019.1574138
Keywords Lighting; Energy; Skyglow; LED
Abstract The broad implementation of light emitting diode (LED) light sources in public lighting has become a revolution in recent years. Their low power consumption and good performance (extremely low onset time, long lifetime, high efficacy) make LEDs an optimal solution in most outdoor applications. In addition, the white light emitted by the vast majority of LEDs used in public lighting and their good color rendering improve well-being, comfort, and safety in cities, especially in commercial zones and urban centers. However, regulations on light pollution that have been developed in some countries in parallel to the introduction of LED lighting impose strong constraints to white light emission, which is present due to the higher Rayleigh scattering of short wavelengths. These regulations request filtering blue wavelengths in some protected areas and thus limit the projects to high- or low-pressure sodium sources or amber LEDs. In this work, the pros and cons of white and amber LED lighting in rural areas are analyzed and compared through simulations made on a typical rural lighting situation and considerations based on efficiency, visual performance, nonvisual effects, and light pollution. The most important conclusion is that Rayleigh scattering seems to prevail in the current considerations on light pollution, whereas other important aspects affecting safety and sustainability are are not considered. Accurate designs can decrease light pollution without constraints against white LEDs. The objective of this work is to provide evidence leading to consider light pollution from a more general perspective in the benefit of humans and the environment.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1550-2724 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2380
Permanent link to this record