|   | 
Details
   web
Records
Author Batra, T.; Malik, I.; Prabhat, A.; Bhardwaj, S.K.; Kumar, V.
Title Sleep in unnatural times: illuminated night negatively affects sleep and associated hypothalamic gene expressions in diurnal zebra finches Type Journal Article
Year (down) 2020 Publication Proceedings. Biological Sciences Abbreviated Journal Proc Biol Sci
Volume 287 Issue 1928 Pages 20192952
Keywords Animals; bird; dim light at night; gene expression; hypothalamus; sleep; zebra finch
Abstract We investigated the effects of exposure at ecologically relevant levels of dim light at night (dLAN) on sleep and the 24 h hypothalamic expression pattern of genes involved in the circadian timing (per2, bmal1, reverb-beta, cry1, ror-alpha, clock) and sleep regulatory pathways (cytokines: tlr4, tnf-alpha, il-1beta, nos; Ca(2+)-dependent pathway: camk2, sik3, nr3a; cholinergic receptor, achm3) in diurnal female zebra finches. Birds were exposed to 12 h light (150 lux) coupled with 12 h of absolute darkness or of 5 lux dim light for three weeks. dLAN fragmented the nocturnal sleep in reduced bouts, and caused sleep loss as evidenced by reduced plasma oxalate levels. Under dLAN, the 24 h rhythm of per2, but not bmal1 or reverb-beta, showed a reduced amplitude and altered peak expression time; however, clock, ror-alpha and cry1 expressions showed an abolition of the 24 h rhythm. Decreased tlr4, il-1beta and nos, and the lack of diurnal difference in achm3 messenger RNA levels suggested an attenuated inhibition of the arousal system (hence, awake state promotion) under dLAN. Similarly, changes in camk2, sik3 and nr3a expressions suggested dLAN-effects on Ca(2+)-dependent sleep-inducing pathways. These results demonstrate dLAN-induced negative effects on sleep and associated hypothalamic molecular pathways, and provide insights into health risks of illuminated night exposures to diurnal animals.
Address Department of Zoology, University of Delhi, Delhi 110 007, India
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0962-8452 ISBN Medium
Area Expedition Conference
Notes PMID:32517617 Approved no
Call Number GFZ @ kyba @ Serial 2995
Permanent link to this record
 

 
Author Bouroussis, C.A.; Topalis, F.V.
Title Assessment of outdoor lighting installations and their impact on light pollution using unmanned aircraft systems – The concept of the drone-gonio-photometer Type Journal Article
Year (down) 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 253 Issue Pages 107155
Keywords Instrumentation; Lighting
Abstract This paper presents the ongoing work of the lighting laboratory to develop a standardized method for the measurement of several types of lighting installations using unmanned aircraft systems. The technology of unmanned aircraft systems can incorporate multiple types of sensors and can be programmed to fly in predefined areas and routes in order to perform complex measurements with limited human intervention. This technology provides the freedom of measurements from several angular positions and altitudes in a fast, easy, accurate and repeatable way. The overall aim of this work is to assess the lighting installations, not only against the applicable lighting standards but also to investigate and reveal issues related to light pollution and obtrusive lighting. The latter are issues that in most cases are neglected due to the lack of standardized methods of calculation and measurement. Current assessment methods require illuminance or luminance measurements of horizontal and vertical surfaces generally from the ground. The proposed approach provides a holistic three-dimensional evaluation of the lighting installations beyond the common methods and geometries and opens the discussion for future update of the relevant standards on outdoor lighting. In the scope of this paper, several proof-of-concept cases are presented.
Address Lighting Laboratory, School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou Str, 15780, Zografou, Athens, Greece; bouroussis(at)gmail.com
Corporate Author Thesis
Publisher Elsevier Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2996
Permanent link to this record
 

 
Author He, L.; Páez, A.; Jiao, J.; An, P.; Lu, C.; Mao, W.; Long, D.
Title Ambient Population and Larceny-Theft: A Spatial Analysis Using Mobile Phone Data Type Journal Article
Year (down) 2020 Publication ISPRS International Journal of Geo-Information Abbreviated Journal Ijgi
Volume 9 Issue 6 Pages 342
Keywords Remote Sensing; Public Safety
Abstract In the spatial analysis of crime, the residential population has been a conventional measure of the population at risk. Recent studies suggest that the ambient population is a useful alternative measure of the population at risk that can better capture the activity patterns of a population. However, current studies are limited by the availability of high precision demographic characteristics, such as social activities and the origins of residents. In this research, we use spatially referenced mobile phone data to measure the size and activity patterns of various types of ambient population, and further investigate the link between urban larceny-theft and population with multiple demographic and activity characteristics. A series of crime attractors, generators, and detractors are also considered in the analysis to account for the spatial variation of crime opportunities. The major findings based on a negative binomial model are three-fold. (1) The size of the non-local population and people’s social regularity calculated from mobile phone big data significantly correlate with the spatial variation of larceny-theft. (2) Crime attractors, generators, and detractors, measured by five types of Points of Interest (POIs), significantly depict the criminality of places and impact opportunities for crime. (3) Higher levels of nighttime light are associated with increased levels of larceny-theft. The results have practical implications for linking the ambient population to crime, and the insights are informative for several theories of crime and crime prevention efforts.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2220-9964 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2997
Permanent link to this record
 

 
Author Kolláth, Z.; Cool, A.; Jechow, A.; Kolláth, K.; Száz, D.; Tong, K.P.
Title Introducing the Dark Sky Unit for multi-spectral measurement of the night sky quality with commercial digital cameras Type Journal Article
Year (down) 2020 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 253 Issue Pages 107162
Keywords Skyglow; Instrumentation; Measurement; light pollution; Radiometry
Abstract Multi-spectral imaging radiometry of the night sky provides essential information on light pollution (skyglow) and sky quality. However, due to the different spectral sensitivity of the devices used for light pollution measurement, the comparison of different surveys is not always trivial. In addition to the differences between measurement approaches, there is a strong variation in natural sky radiance due to the changes of airglow. Thus, especially at dark locations, the classical measurement methods (such as Sky Quality Meters) fail to provide consistent results. In this paper, we show how to make better use of the multi-spectral capabilities of commercial digital cameras and show their application for airglow analysis. We further recommend a novel sky quality metric the ”Dark Sky Unit”, based on an easily usable and SI traceable unit. This unit is a natural choice for consistent, digital camera-based measurements. We also present our camera system calibration methodology for use with the introduced metrics.
Address ELTE BDPK, Szombathely, Department of Physics, Hungary; zkollath(at)gmail.com
Corporate Author Thesis
Publisher Elsever Place of Publication Elsevier Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 2998
Permanent link to this record
 

 
Author Hey, M.H.; DiBiase, E.; Roach, D.A.; Carr, D.E.; Haynes, K.J.
Title Interactions between artificial light at night, soil moisture, and plant density affect the growth of a perennial wildflower Type Journal Article
Year (down) 2020 Publication Oecologia Abbreviated Journal Oecologia
Volume in press Issue Pages
Keywords Plants; Community ecology; Light pollution; Milkweed; Precipitation; Sensory pollution
Abstract Artificial light at night (ALAN) has been shown to alter aspects of plant growth, but we are not aware of any studies that have examined whether the effects of ALAN on plants depend upon the backdrop of variation in other abiotic factors that plants encounter in field populations. We conducted a field experiment to investigate whether ALAN affects the growth and anti-herbivore defenses of common milkweed, Asclepias syriaca, and whether the effects of ALAN are influenced by plant density or soil moisture content. Artificial light at night, soil moisture, and plant density were manipulated according to a split-plot factorial design. Although increasing soil moisture by watering had no significant effects on latex exudation, attributes of plant growth generally responded positively to watering. The basal stem diameter (BSD) and height of plants were affected by ALAN x soil moisture interactions. For both of these variables, the positive effects of ALAN were greater for plants that were not watered than for plants that were. Basal stem diameter was also affected by an ALAN x plant density interaction, and the positive effect of ALAN on BSD was greater in the low-density treatment than in the high-density treatment. Our results demonstrate that the effects of ALAN on plant growth can be altered by soil moisture and plant density. Consequently, the effects of ALAN on plants in nature may not be consistent with existing frameworks that do not account for critical abiotic variables such as water availability or biotic interactions between plants such as competition.
Address Blandy Experimental Farm, University of Virginia, 400 Blandy Farm Lane, Boyce, VA, 22620, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0029-8549 ISBN Medium
Area Expedition Conference
Notes PMID:32533357 Approved no
Call Number GFZ @ kyba @ Serial 3003
Permanent link to this record