|   | 
Details
   web
Records
Author Musila, S.; Bogdanowicz, W.; Syingi, R.; Zuhura, A.; Chylarecki, P.; Rydell, J.
Title No lunar phobia in insectivorous bats in Kenya Type Journal Article
Year (down) 2019 Publication Mammalian Biology Abbreviated Journal Mammalian Biology
Volume 95 Issue Pages 77-84
Keywords Animals
Abstract We monitored foraging insectivorous bats along walked transects in forest and farmland at Arabuko-Sokoke Forest in coastal Kenya, using a heterodyne bat detector. The main purpose was to test whether aerial-hawking insectivorous bats that feed in open places (in this case mostly Scotophilus and Scotoecus spp.) show lunar phobia, i.e. restricting their activity on moonlit nights. Such behavior would be an expected response to the threat posed by visually oriented aerial predators such as bat hawks, owls and carnivorous bats. The occurrence of lunar phobia in bats is a controversial issue and may have implications for how bats will be affected by increasing light pollution. Our results show that foraging activity of the bats that we studied was related to time of day, season, and habitat, albeit with no additional effect of moonlight discernable. We therefore conclude that foraging activity occurs independently of moonlight. This result is partly at odds with previous findings including predictions from a meta-analysis of lunar phobia in bats, which indicates that lunar phobia is common in these animals, though most likely to be present in tropical species that feed in open situations near vegetation and over water. Equally, our results conform to findings from studies of aerial insectivorous bats in tropical as well as temperate areas, most of which have failed to reveal any clear evidence of lunar phobia. We believe that moonlight generally does not facilitate aerial predation on flying bats in open situations, or, alternatively, the bats accept increased predation pressure while they fulfil the energetic requirements through hunting.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1616-5047 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2269
Permanent link to this record
 

 
Author Levin, N.; Ali, S.; Crandall, D.; Kark, S.
Title World Heritage in danger: Big data and remote sensing can help protect sites in conflict zones Type Journal Article
Year (down) 2019 Publication Global Environmental Change Abbreviated Journal Global Environmental Change
Volume 55 Issue Pages 97-104
Keywords Remote Sensing
Abstract World Heritage sites provide a key mechanism for protecting areas of universal importance. However, fifty-four UNESCO sites are currently listed as “In Danger”, with 40% of these located in the Middle East. Since 2010 alone, thirty new sites were identified as under risk globally. We combined big-data and remote sensing to examine whether they can effectively be used to identify danger to World Heritage in near real-time. We found that armed-conflicts substantially threaten both natural- and cultural-heritage listed sites. Other major risks include poor management and development (globally), poaching (Africa mostly) and deforestation (tropics), yet conflict is the most prominent threat. We show that news-mining of big-data on conflicts and remote sensing of nights-lights enabled us to identify conflict afflicted areas in near real-time. These findings provide a crucial avenue for developing a global transparent early-warning system before irreversible damage to world heritage takes place.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0959-3780 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2279
Permanent link to this record
 

 
Author Schulte-Römer, N.; Meier, J.; Dannemann, E.; Söding, M.
Title Lighting Professionals versus Light Pollution Experts? Investigating Views on an Emerging Environmental Concern Type Journal Article
Year (down) 2019 Publication Sustainability Abbreviated Journal Sustainability
Volume 11 Issue 6 Pages 1696
Keywords Lighting; Society
Abstract Concerns about the potential negative effects of artificial light at night on humans, flora and fauna, were originally raised by astronomers and environmentalists. Yet, we observe a growing interest in what is called light pollution among the general public and in the lighting field. Although lighting professionals are often critical of calling light ‘pollution’, they increasingly acknowledge the problem and are beginning to act accordingly. Are those who illuminate joining forces with those who take a critical stance towards artificial light at night? We explore this question in more detail based on the results of a non-representative worldwide expert survey. In our analysis, we distinguish between “lighting professionals” with occupational backgrounds linked to lighting design and the lighting industry, and “light pollution experts” with mostly astronomy- and environment-related professional backgrounds, and explore their opposing and shared views vis-à-vis issues of light pollution. Our analysis reveals that despite seemingly conflicting interests, lighting professionals and light pollution experts largely agree on the problem definition and problem-solving approaches. However, we see diverging views regarding potential obstacles to light pollution mitigation and associated governance challenges.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 2071-1050 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2278
Permanent link to this record
 

 
Author Stone, T.; Santoni de Sio, F.; Vermaas, P.E.
Title Driving in the Dark: Designing Autonomous Vehicles for Reducing Light Pollution Type Journal Article
Year (down) 2019 Publication Science and Engineering Ethics Abbreviated Journal Sci Eng Ethics
Volume in press Issue Pages
Keywords Society; Darkness; Planning; Public Safety
Abstract This paper proposes that autonomous vehicles should be designed to reduce light pollution. In support of this specific proposal, a moral assessment of autonomous vehicles more comprehensive than the dilemmatic life-and-death questions of trolley problem-style situations is presented. The paper therefore consists of two interrelated arguments. The first is that autonomous vehicles are currently still a technology in development, and not one that has acquired its definitive shape, meaning the design of both the vehicles and the surrounding infrastructure is open-ended. Design for values is utilized to articulate a path forward, by which engineering ethics should strive to incorporate values into a technology during its development phase. Second, it is argued that nighttime lighting-a critical supporting infrastructure-should be a prima facie consideration for autonomous vehicles during their development phase. It is shown that a reduction in light pollution, and more boldly a better balance of lighting and darkness, can be achieved via the design of future autonomous vehicles. Two case studies are examined (parking lots and highways) through which autonomous vehicles may be designed for “driving in the dark.” Nighttime lighting issues are thus inserted into a broader ethics of autonomous vehicles, while simultaneously introducing questions of autonomous vehicles into debates about light pollution.
Address Department Ethics/Philosophy of Technology, Delft University of Technology, Delft, Netherlands
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1353-3452 ISBN Medium
Area Expedition Conference
Notes PMID:30903370 Approved no
Call Number GFZ @ kyba @ Serial 2277
Permanent link to this record
 

 
Author Zhang, X.; Yang, W.; Liang, W.; Wang, Y.; Zhang, S.
Title Intensity dependent disruptive effects of light at night on activation of the HPG axis of tree sparrows (Passer montanus) Type Journal Article
Year (down) 2019 Publication Environmental Pollution Abbreviated Journal Environmental Pollution
Volume in press Issue Pages
Keywords Animals
Abstract Artificial light at night (ALAN) has become increasingly recognized as a disruptor of the reproductive endocrine process and behavior of wild birds. However, there is no evidence that ALAN directly disrupt the hypothalamus-pituitary-gonadal (HPG) axis, and no information on the effects of different ALAN intensities on birds. We experimentally tested whether ALAN affects reproductive endocrine activation in the HPG axis of birds, and whether this effect is related to the intensity of ALAN, in wild tree sparrows (Passer montanus). Forty-eight adult female birds were randomly assigned to four groups. They were first exposed to a short light photoperiod (8 h light and 16 h dark per day) for 20 days, then exposed to a long light photoperiod (16 h light and 8 h dark per day) to initiate the reproductive endocrine process. During these two kinds of photoperiod treatments, the four groups of birds were exposed to 0, 85, 150, and 300 lux light in the dark phase (night) respectively. The expression of the reproductive endocrine activation related TSH-β, Dio2 and GnRH-I gene was significantly higher in birds exposed to 85 lux light at night, and significantly lower in birds exposed to 150 and 300 lux, relative to the 0 lux control. The birds exposed to 85 lux had higher peak values of plasma LH and estradiol concentration and reached the peak earlier than birds exposed to 0, 150, or 300 lux did. The lower gene expression of birds exposed to 150 and 300 lux reduced their peak LH and estradiol values, but did not delay the timing of these peaks compared to the control group. These results reveal that low intensity ALAN accelerates the activation of the reproductive endocrine process in the HPG axis, whereas high intensity ALAN retards it.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0269-7491 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2281
Permanent link to this record