Records |
Author |
Beresford, A.E.; Donald, P.F.; Buchanan, G.M. |
Title |
Repeatable and standardised monitoring of threats to Key Biodiversity Areas in Africa using Google Earth Engine |
Type |
Journal Article |
Year  |
2020 |
Publication |
Ecological Indicators |
Abbreviated Journal |
Ecological Indicators |
Volume |
109 |
Issue |
|
Pages |
105763 |
Keywords |
Remote Sensing |
Abstract |
Key Biodiversity Areas (KBAs) are sites that make significant contributions to the global persistence of biodiversity, but identification of sites alone is not sufficient to ensure their conservation. Monitoring is essential if pressures on these sites are to be identified, priorities set and appropriate responses developed. Here, we describe how analysis of freely available data on a cloud-processing platform (Google Earth Engine) can be used to assess changes in three example remotely sensed threat indicators (fire frequency, tree loss and night-time lights) over time on KBAs in Africa. We develop easily repeatable methods with shared code that could be applied across any geographic area and could be adapted and applied to other datasets as they become available. Fire frequency was found to have increased significantly on 12.4% of KBAs and 15.9% of ecoregions, whilst rates of forest loss increased significantly on 24.3% of KBAs and 22.6% of ecoregions. There was also evidence of significant increases in night-time lights on over half (53.3%) of KBAs and 39.6% of ecoregions between 1992 and 2013, and on 11.6% of KBAs and 53.0% of ecoregions between 2014 and 2018. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
1470160X |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2707 |
Permanent link to this record |
|
|
|
Author |
Ardavani, O.; Zerefos, S.; Doulos, L.T. |
Title |
Redesigning the exterior lighting as part of the urban landscape: The role of transgenic bioluminescent plants in mediterranean urban and suburban lighting environments |
Type |
Journal Article |
Year  |
2020 |
Publication |
Journal of Cleaner Production |
Abbreviated Journal |
Journal of Cleaner Production |
Volume |
242 |
Issue |
|
Pages |
118477 |
Keywords |
Plants; Lighting |
Abstract |
This research discusses the feasibility of replacing or supporting artificial lighting with Transgenic Bioluminescent Plants (TBP), as a means of minimizing light pollution, reducing electrical energy consumption and de-carbonizing urban and suburban outdoor environments, creating sustainable conditions and enriching the quality of life. Until now, no information is given about the light output of any TBPs and the question “Are the TBPs capable of producing the necessary lighting levels for exterior lighting?” is unanswered. For this reason, a new methodology is proposed for selecting and analyzing the lighting output potential of transgenic plants ted for specific climatic conditions. This methodology considers growth and reduction factors, as well as a formulae for estimating the plants’ luminous output by performing light measurements. Results show that transgenic plants in medium growth can emit a median luminous flux of up to 57 lm, a value that can definitely support low lighting requirements when used in large numbers of plants. From the lighting measurements and calculations performed in this research, the light output of the TBPs for a typical road with 5m width was found equal to 2lx. The amount of plants required was 40 at each side of the road for every 30m of streets with P6 road class. The results show that the use of bioluminescent plants can actually contribute to the reduction of energy consumption, concerning only the lighting criterium, thus creating an enormous opportunity for a new state-of- the-art market and research that could potentially minimize CO2 emissions and light pollution, improve urban and suburban microclimate, mitigate the effects of climate change, as well as provide an alternative means of lighting affecting both outdoor lighting design and landscape planning in suburban and urban settings. Moreover, further research should be applied considering also other possible ecological impacts before applying TBPs for exterior lighting applications. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0959-6526 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2711 |
Permanent link to this record |
|
|
|
Author |
Wang, C.; Chen, Z.; Yang, C.; Li, Q.; Wu, Q.; Wu, J.; Zhang, G.; Yu, B. |
Title |
Analyzing parcel-level relationships between Luojia 1-01 nighttime light intensity and artificial surface features across Shanghai, China: A comparison with NPP-VIIRS data |
Type |
Journal Article |
Year  |
2020 |
Publication |
International Journal of Applied Earth Observation and Geoinformation |
Abbreviated Journal |
International Journal of Applied Earth Observation and Geoinformation |
Volume |
85 |
Issue |
|
Pages |
101989 |
Keywords |
Remote Sensing |
Abstract |
Nighttime light (NTL) remote sensing data have been widely used to derive socioeconomic indices at national and regional scales. However, few studies analyzed the factors that may explain NTL variations at a fine scale due to the limited resolution of existing NTL data. As a new generation NTL satellite, Luojia 1-01 provides NTL data with a finer spatial resolution of ∼130 m and can be used to assess the relationship between NTL intensity and artificial surface features on an unprecedented scale. This study represents the first efforts to assess the relationship between Luojia 1-01 NTL intensity and artificial surface features at the parcel level in comparison to the Suomi National Polar-orbiting Partnership-Visible Infrared Imaging Radiometer Suite (NPP-VIIRS) NTL data. Points-of-interest (POIs) and land-use/land-cover (LULC) data were used in random forest (RF) regression models for both Luojia 1-01 and NPP-VIIRS to analyze the feature contribution of artificial surface features to NTL intensity. The results show that luminosity variations in Luojia 1-01 data for different land-use types were more significant than those in NPP-VIIRS data because of the finer spatial resolution and wider measurement range. Seventeen variables extracted from POI and LULC data explained the Luojia 1-01 and NPP-VIIRS NTL intensity, with a good out-of-bag score of 0.62 and 0.76, respectively. Moreover, Luojia 1-01 data had fewer “blooming” phenomena than NPP-VIIRS data, especially for cropland, water body, and rural area. Luojia 1-01 is more suitable for estimating socioeconomic activities and can attain more comprehensive information on human activities, since the feature contribution of POI variables is more sensitive to NTL intensity in the Luojia 1-01 RF regression model than that in the NPP-VIIRS RF regression model. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0303-2434 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2745 |
Permanent link to this record |
|
|
|
Author |
Gong, P.; Li, X.; Wang, J.; Bai, Y.; Chen, B.; Hu, T.; Liu, X.; Xu, B.; Yang, J.; Zhang, W.; Zhou, Y. |
Title |
Annual maps of global artificial impervious area (GAIA) between 1985 and 2018 |
Type |
Journal Article |
Year  |
2020 |
Publication |
Remote Sensing of Environment |
Abbreviated Journal |
Remote Sensing of Environment |
Volume |
236 |
Issue |
|
Pages |
in press |
Keywords |
Remote Sensing |
Abstract |
Artificial impervious areas are predominant indicators of human settlements. Timely, accurate, and frequent information on artificial impervious areas is critical to understanding the process of urbanization and land use/cover change, as well as of their impacts on the environment and biodiversity. Despite their importance, there still lack annual maps of high-resolution Global Artificial Impervious Areas (GAIA) with longer than 30-year records, due to the high demand of high performance computation and the lack of effective mapping algorithms. In this paper, we mapped annual GAIA from 1985 to 2018 using the full archive of 30-m resolution Landsat images on the Google Earth Engine platform. With ancillary datasets, including the nighttime light data and the Sentinel-1 Synthetic Aperture Radar data, we improved the performance of our previously developed algorithm in arid areas. We evaluated the GAIA data for 1985, 1990, 1995, 2000, 2005, 2010, and 2015, and the mean overall accuracy is higher than 90%. A cross-product comparison indicates the GAIA data are the only dataset spanning over 30 years. The temporal trend in GAIA agrees well with other datasets at the local, regional, and global scales. Our results indicate that the GAIA reached 797,076 km2 in 2018, which is 1.5 times more than that in 1990. China and the United States (US) rank among the top two in artificial impervious area, accounting for approximately 50% of the world's total in 2018. The artificial impervious area of China surpassed that of the US in 2015. By 2018, the remaining eight among the top ten countries are India, Russia, Brazil, France, Italy, Germany, Japan, and Canada. The GAIA dataset can be freely downloaded from http://data.ess.tsinghua.edu.cn. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0034-4257 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2756 |
Permanent link to this record |
|
|
|
Author |
Lao, S.; Robertson, B.A.; Anderson, A.W.; Blair, R.B.; Eckles, J.W.; Turner, R.J.; Loss, S.R. |
Title |
The influence of artificial night at night and polarized light on bird-building collisions |
Type |
Journal Article |
Year  |
2020 |
Publication |
Biological Conservation |
Abbreviated Journal |
Biological Conservation |
Volume |
241 |
Issue |
|
Pages |
108358 |
Keywords |
Animals |
Abstract |
Collisions with buildings annually kill up to 1 billion birds in the United States. Bird-building collisions primarily occur at glass surfaces: birds often fail to perceive glass as a barrier and appear to be attracted to artificial light emitted from windows. However, some aspects of avian vision are poorly understood, including how bird responses to different types of light influence building collisions. Some evidence suggests birds can detect polarized light, which may serve as a cue to assist with migration orientation and/or detect water bodies. Dark, reflective surfaces, including glass, reflect high degrees of polarized light, causing polarized light pollution (PLP). However, no studies have analyzed the relationship between bird collisions and PLP reflected from buildings. Additionally, while artificial light at night (ALAN) is frequently implicated as a major factor influencing bird-building collisions, few studies have analyzed this relationship. We investigated both types of light pollution—PLP and ALAN—and their association with bird collisions at 48 façades of 13 buildings in Minneapolis, Minnesota, USA. We found that the area of glass emitting ALAN was the most important factor influencing collisions, and that this effect of ALAN was independent of overall glass area; this result provides strong support for turning off lights at night to reduce bird-building collisions. Although we found no relationship between PLP and collisions, additional research is needed to better understand bird responses to polarized light. Fully understanding how different aspects of light influence bird-building collisions can inform conservation efforts to reduce this major threat to birds. |
Address |
|
Corporate Author |
|
Thesis |
|
Publisher |
|
Place of Publication |
|
Editor |
|
Language |
|
Summary Language |
|
Original Title |
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
Series Volume |
|
Series Issue |
|
Edition |
|
ISSN |
0006-3207 |
ISBN |
|
Medium |
|
Area |
|
Expedition |
|
Conference |
|
Notes |
|
Approved |
no |
Call Number |
GFZ @ kyba @ |
Serial |
2757 |
Permanent link to this record |