|   | 
Details
   web
Records
Author Lystrup, D.E.
Title The Dark Side of the Light: Rachel Carson, Light Pollution, and a Case for Federal Regulation Type Journal Article
Year (up) 2017 Publication Jurimetrics Abbreviated Journal Jurimetrics
Volume 57 Issue 4 Pages 505-528
Keywords Society; law; light pollution; regulation; environmentalism
Abstract This comment explores the negative effects of light pollution and considers whether current levels of artificial light at night (LAN) warrant federal control by the Environmental Protection Agency (EPA). This study first identifies the negative effects of light pollution on human health and the environment, treatment of which aligns with the mission statement of the EPA. Light pollution comprises both a private and a public nuisance. Next, this comment assesses the effectiveness of the common law approach, local government, state government, and federal control over light pollution in this context to determine which form of governance is most effective. Then, EPA involvement through federal and state implemented plans, as well as federal regulation of manufacturing is investigated. Last, this comment considers the necessity of private action through an emerging legal reform called new governance, which emphasizes public-private approaches. The negative effects of light pollution on human health and the environment could eventually lead the EPA to assert control over the regulation of light pollution, but under the current presidential administration this is highly unlikely. The predicted lack of government action leads me to call for nongovernment organizations (NGOs) to step in and take action to privately regulate light pollution and mitigate its negative effects through certification regimes, insurance premium incentives, and corporate social responsibility until government exerts regulatory control.
Address Sandra Day O’Connor College of Law, Arizona State University, MC 9520 Arizona State University 111 E. Taylor Street Phoenix, AZ 85004-4467 USA
Corporate Author Thesis
Publisher American Bar Association Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1995
Permanent link to this record
 

 
Author Kinzey, B.R.; Perrin, T.E.; Miller, N.J.; Kocifaj, M.; Aubé, M.; Lamphar, H.A.
Title An investigation of LED street lighting's impact on sky glow Type Journal Article
Year (up) 2017 Publication Abbreviated Journal
Volume PNNL-26411 Issue Pages
Keywords Skyglow; Lighting
Abstract A significant amount of public attention has recently focused on perceived impacts of converting street lighting from incumbent lamp-based products to LED technology. Much of this attention pertains to the higher content of short wavelength light (commonly referred to as “blue light”) of LEDs and its attendant influences on sky glow (a brightening of the night sky that can interfere with astronomical observation and may be associated with a host of other issues). The complexity of this topic leads to common misunderstandings and misperceptions among the public, and for this reason the U.S. Department of Energy Solid-State Lighting Program embarked on a study of sky glow using a well-established astronomical model to investigate some of the primary factors influencing sky glow. This report details the results of the investigation and attempts to present those results in terms accessible to the general lighting community. The report also strives to put the results into a larger context, and help educate interested readers on various topics relevant to the issues being discussed.
Address
Corporate Author Pacific Northwest National Lab. (PNNL), Richland, WA (United States) Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2014
Permanent link to this record
 

 
Author Bennett, M.M.; Smith, L.C.
Title Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics Type Journal Article
Year (up) 2017 Publication Remote Sensing of Environment Abbreviated Journal Remote Sensing of Environment
Volume 192 Issue Pages 176-197
Keywords Remote Sensing
Abstract Since the late 1990s, remotely sensed night-time lights (NTL) satellite imagery has been shown to correlate with socioeconomic parameters including urbanization, economic activity, and population. More recent research demonstrates that multitemporal NTL data can serve as a reliable proxy for change over time in these variables whether they are increasing or decreasing. Time series analysis of NTL data is especially valuable for detecting, estimating, and monitoring socioeconomic dynamics in countries and subnational regions where reliable official statistics may be lacking. Until 2012, multitemporal NTL imagery came primarily from the Defense Meteorological Satellite Program – Operational Linescan System (DMSP-OLS), for which digital imagery is available from 1992 to 2013. In October 2011, the launch of NASA/NOAA's Suomi National Polar-orbiting Partnership satellite, whose Visible Infrared Imaging Radiometer Suite (VIIRS) sensor has a Day/Night Band (DNB) specifically designed for capturing radiance from the Earth at night, marked the start of a new era in NTL data collection and applications. In light of these advances, this paper reviews progress in using multitemporal DMSP-OLS and VIIRS imagery to analyze urbanization, economic, and population dynamics across a range of geographic scales. An overview of data corrections and processing for comparison of multitemporal NTL imagery is provided, followed by a meta-analysis and integrative synthesis of these studies. Figures are included that visualize the capabilities of DMSP-OLS and VIIRS to capture socioeconomic change in the post-Soviet Russian Far East and war-torn Syria, respectively. Finally, future directions for NTL research are suggested, particularly in the areas of determining the fundamental causes of observed light and in leveraging VIIRS' superior sensitivity and spatial and radiometric resolution.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0034-4257 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2024
Permanent link to this record
 

 
Author You, X.; Monahan, K.M.
Title A thirst for development: mapping water stress using night-time stable lights as predictors of province-level water stress in China Type Journal Article
Year (up) 2017 Publication Area Abbreviated Journal Area
Volume 49 Issue 4 Pages 477-485
Keywords Remote Sensing
Abstract Given the rapid development within China, the inequality of available water resources has been increasingly of interest. Current methods for assessing water stress are inadequate for province‐scale rapid monitoring. A more responsive indicator at a finer scale is needed to understand the distribution of water stress in China. This paper selected Defense Meteorological Satellite Program Operational Line‐scan System night‐time stable lights as a proxy for water stress at the province level in China from 2004 to 2012, as night‐time lights are closely linked with population density, electricity consumption and other social, economic and environmental indicators associated with water stress. The linear regression results showed the intensity of night‐time lights can serve as a predictive tool to assess water stress across provinces with an R2 from 0.797 to 0.854. The model worked especially well in some regions, such as East China, North China and South West China. Nonetheless, confounding factors interfered with the predictive relationship, including population density, level of economic development, natural resource endowment and industrial structures, etc. The model was not greatly improved by building a multi‐variable linear regression including agricultural and industrial indicators. A straightforward predictor of water stress using remotely sensed data was developed.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0004-0894 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2030
Permanent link to this record
 

 
Author Petržala, J.; Kocifaj, M.
Title Research on spectral factors towards determining nocturnal ground irradiance under overcast sky conditions in densely populated regions Type Journal Article
Year (up) 2017 Publication Journal of Quantitative Spectroscopy and Radiative Transfer Abbreviated Journal Journal of Quantitative Spectroscopy and Radiative Transfer
Volume 189 Issue Pages 126-132
Keywords Skyglow
Abstract Light pollution is closely correlated with the meteorological factors, specifically cloudiness that is one of the major amplifiers of night sky radiances in urban regions. Although the decisive effects of cloud deck on artificial nighttime skyglow have been recognized experimentally, the radiative transfer modelling in a heterogeneous nocturnal environment illuminated from many light sources is a non-trivial problem that is difficult to solve both theoretically and numerically. A satisfactorily accurate evaluation of ground-reaching diffuse light is, however, an important issue as some optical properties (e.g. horizontal irradiance) are usually difficult to obtain with common instruments. Overcast sky represents a special class of situations in which clouds can act as amplifiers of the light pollution of the city.

In this paper we proceeded with a simple two-stream approach to solve the scalar radiative transfer equation (RTE) under overcast conditions. The technique we are using allows for a rapid prediction of ground irradiances in densely populated regions assuming various emission functions. We have shown that the classical RTE concept can be adopted in determining the diffuse irradiance, while the model abilities are illustrated in a set of numerical experiments for low and high turbidity states.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0022-4073 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number GFZ @ kyba @ Serial 2034
Permanent link to this record