|   | 
Details
   web
Records
Author Arendt, J.
Title Biological rhythms during residence in polar regions Type Journal Article
Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 29 Issue 4 Pages 379-394
Keywords *Acclimatization; Activities of Daily Living; Affect; Antarctic Regions; Arctic Regions; *Biological Clocks; *Circadian Rhythm; *Cold Climate; *Cold Temperature; Energy Metabolism; Feeding Behavior; Humans; Melatonin/metabolism; Personnel Staffing and Scheduling; *Photoperiod; Seasonal Affective Disorder/physiopathology/prevention & control/psychology; *Seasons; Sleep; Sleep Disorders, Circadian Rhythm/etiology/physiopathology/*prevention & control/psychology; Time Factors; Workload; Workplace
Abstract At Arctic and Antarctic latitudes, personnel are deprived of natural sunlight in winter and have continuous daylight in summer: light of sufficient intensity and suitable spectral composition is the main factor that maintains the 24-h period of human circadian rhythms. Thus, the status of the circadian system is of interest. Moreover, the relatively controlled artificial light conditions in winter are conducive to experimentation with different types of light treatment. The hormone melatonin and/or its metabolite 6-sulfatoxymelatonin (aMT6s) provide probably the best index of circadian (and seasonal) timing. A frequent observation has been a delay of the circadian system in winter. A skeleton photoperiod (2 x 1-h, bright white light, morning and evening) can restore summer timing. A single 1-h pulse of light in the morning may be sufficient. A few people desynchronize from the 24-h day (free-run) and show their intrinsic circadian period, usually >24 h. With regard to general health in polar regions, intermittent reports describe abnormalities in various physiological processes from the point of view of daily and seasonal rhythms, but positive health outcomes are also published. True winter depression (SAD) appears to be rare, although subsyndromal SAD is reported. Probably of most concern are the numerous reports of sleep problems. These have prompted investigations of the underlying mechanisms and treatment interventions. A delay of the circadian system with “normal” working hours implies sleep is attempted at a suboptimal phase. Decrements in sleep efficiency, latency, duration, and quality are also seen in winter. Increasing the intensity of ambient light exposure throughout the day advanced circadian phase and was associated with benefits for sleep: blue-enriched light was slightly more effective than standard white light. Effects on performance remain to be fully investigated. At 75 degrees S, base personnel adapt the circadian system to night work within a week, in contrast to temperate zones where complete adaptation rarely occurs. A similar situation occurs on high-latitude North Sea oil installations, especially when working 18:00-06:00 h. Lack of conflicting light exposure (and “social obligations”) is the probable explanation. Many have problems returning to day work, showing circadian desynchrony. Timed light treatment again has helped to restore normal phase/sleep in a small number of people. Postprandial response to meals is compromised during periods of desynchrony with evidence of insulin resistance and elevated triglycerides, risk factors for heart disease. Only small numbers of subjects have been studied intensively in polar regions; however, these observations suggest that suboptimal light conditions are deleterious to health. They apply equally to people living in temperate zones with insufficient light exposure.
Address Centre for Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK. arendtjo@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:22497433; PMCID:PMC3793275 Approved no
Call Number IDA @ john @ Serial 143
Permanent link to this record
 

 
Author Arendt, J.; Middleton, B.
Title Human seasonal and circadian studies in Antarctica (Halley, 75 degrees S) Type Journal Article
Year 2018 Publication General and Comparative Endocrinology Abbreviated Journal Gen Comp Endocrinol
Volume 258 Issue Pages 250-258
Keywords Human Activities; Acclimatization/*physiology; Actigraphy; Adult; Antarctic Regions; Behavior/*physiology; Circadian Rhythm/*physiology; Darkness; Female; Heart Rate/physiology; Humans; Libido; Light; Male; Melatonin/blood; Photoperiod; *Seasons; Sleep/physiology; Young Adult; *Antarctica; *Circadian; *Light; *Melatonin; *Seasonal
Abstract Living for extended periods in Antarctica exposes base personnel to extremes of daylength (photoperiod) and temperature. At the British Antarctic Survey base of Halley, 75 degrees S, the sun does not rise for 110 d in the winter and does not set for 100 d in summer. Photoperiod is the major time cue governing the timing of seasonal events such as reproduction in many species. The neuroendocrine signal providing photoperiodic information to body physiology is the duration of melatonin secretion which reflects the length of the night: longer in the short days of winter and shorter in summer. Light of sufficient intensity and spectral composition serves to suppress production of melatonin and to set the circadian timing and the duration of the rhythm. In humans early observations suggested that bright (>2000 lux) white light was needed to suppress melatonin completely. Shortly thereafter winter depression (Seasonal Affective Disorder or SAD) was described, and its successful treatment by an artificial summer photoperiod of bright white light, sufficient to shorten melatonin production. At Halley dim artificial light intensity during winter was measured, until 2003, at a maximum of approximately 500 lux in winter. Thus a strong seasonal and circadian time cue was absent. It seemed likely that winter depression would be common in the extended period of winter darkness and could be treated with an artificial summer photoperiod. These observations, and predictions, inspired a long series of studies regarding human seasonal and circadian status, and the effects of light treatment, in a small overwintering, isolated community, living in the same conditions for many months at Halley. We found little evidence of SAD, or change in duration of melatonin production with season. However the timing of the melatonin rhythm itself, and/or that of its metabolite 6-sulphatoxymelatonin (aMT6s), was used as a primary marker of seasonal, circadian and treatment changes. A substantial phase delay of melatonin in winter was advanced to summer phase by a two pulse 'skeleton' bright white light treatment. Subsequently a single morning pulse of bright white light was effective with regard to circadian phase and improved daytime performance. The circadian delay evidenced by melatonin was accompanied by delayed sleep (logs and actigraphy): poor sleep is a common complaint in Polar regions. Appropriate extra artificial light, both standard white, and blue enriched, present throughout the day, effectively countered delay in sleep timing and the aMT6s rhythm. The most important factor appeared to be the maximum light experienced. Another manifestation of the winter was a decline in self-rated libido (men only on base at this time). Women on the base showed lower aspects of physical and mental health compared to men. Free-running rhythms were seen in some subjects following night shift, but were rarely found at other times, probably because this base has strongly scheduled activity and leisure time. Complete circadian adaptation during a week of night shift, also seen in a similar situation on North Sea oil rigs, led to problems readapting back to day shift in winter, compared to summer. Here again timed light treatment was used to address the problem. Sleep, alertness and waking performance are critically dependent on optimum circadian phase. Circadian desynchrony is associated with increased risk of major disease in shift workers. These studies provide some groundwork for countering/avoiding circadian desynchrony in rather extreme conditions.
Address Biochemistry and Physiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK. Electronic address: b.middleton@surrey.ac.uk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0016-6480 ISBN Medium
Area Expedition Conference
Notes PMID:28526480 Approved no
Call Number IDA @ john @ Serial 2248
Permanent link to this record
 

 
Author Berson, D.M.; Dunn, F.A.; Takao, M.
Title Phototransduction by retinal ganglion cells that set the circadian clock Type Journal Article
Year 2002 Publication Science (New York, N.Y.) Abbreviated Journal Science
Volume 295 Issue 5557 Pages 1070-1073
Keywords Human Health; Animals; Axons/ultrastructure; *Biological Clocks; *Circadian Rhythm; Dendrites/ultrastructure; Isoquinolines; Kinetics; Light; *Light Signal Transduction; Patch-Clamp Techniques; Rats; Rats, Sprague-Dawley; Retinal Ganglion Cells/chemistry/cytology/*physiology; Rod Opsins/analysis/physiology; Suprachiasmatic Nucleus/cytology/*physiology
Abstract Light synchronizes mammalian circadian rhythms with environmental time by modulating retinal input to the circadian pacemaker-the suprachiasmatic nucleus (SCN) of the hypothalamus. Such photic entrainment requires neither rods nor cones, the only known retinal photoreceptors. Here, we show that retinal ganglion cells innervating the SCN are intrinsically photosensitive. Unlike other ganglion cells, they depolarized in response to light even when all synaptic input from rods and cones was blocked. The sensitivity, spectral tuning, and slow kinetics of this light response matched those of the photic entrainment mechanism, suggesting that these ganglion cells may be the primary photoreceptors for this system.
Address Department of Neuroscience, Brown University, Providence, RI, 02912 USA. David_Berson@brown.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0036-8075 ISBN Medium
Area Expedition Conference
Notes PMID:11834835 Approved no
Call Number LoNNe @ kagoburian @ Serial 720
Permanent link to this record
 

 
Author Boivin, D.B.; Boudreau, P.; James, F.O.; Kin, N.M.K.N.Y.
Title Photic resetting in night-shift work: impact on nurses' sleep Type Journal Article
Year 2012 Publication Chronobiology International Abbreviated Journal Chronobiol Int
Volume 29 Issue 5 Pages 619-628
Keywords Adaptation, Physiological; Adult; *Circadian Rhythm; *Darkness; Female; Humans; *Light; Male; Melatonin/metabolism; Middle Aged; *Nurses; Sleep/*physiology; Work Schedule Tolerance/*physiology
Abstract The objective of this study was to quantify daytime sleep in night-shift workers with and without an intervention designed to recover the normal relationship between the endogenous circadian pacemaker and the sleep/wake cycle. Workers of the treatment group received intermittent exposure to full-spectrum bright light during night shifts and wore dark goggles during the morning commute home. All workers maintained stable 8-h daytime sleep/darkness schedules. The authors found that workers of the treatment group had daytime sleep episodes that lasted 7.1 +/- .1 h (mean +/- SEM) versus 6.6 +/- .2 h for workers in the control group (p = .04). The increase in total sleep time co-occurred with a larger proportion of the melatonin secretory episode during daytime sleep in workers of the treatment group. The results of this study showed reestablishment of a phase angle that is comparable to that observed on a day-oriented schedule favors longer daytime sleep episodes in night-shift workers. (Author correspondence: diane.boivin@douglas.mcgill.ca ).
Address Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of Psychiatry, McGill University, Montreal, Quebec, Canada. diane.boivin@douglas.mcgill.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:22621359 Approved no
Call Number IDA @ john @ Serial 144
Permanent link to this record
 

 
Author Bullough, J.D.; Rea, M.S.; Figueiro, M.G.
Title Of mice and women: light as a circadian stimulus in breast cancer research Type Journal Article
Year 2006 Publication Cancer Causes & Control : CCC Abbreviated Journal Cancer Causes Control
Volume 17 Issue 4 Pages 375-383
Keywords Human Health; Animals; Breast Neoplasms/*physiopathology; *Circadian Rhythm; *Disease Models, Animal; Female; Humans; *Light; Light Signal Transduction; Mammary Neoplasms, Animal/*physiopathology; Melatonin/metabolism; Mice; Muridae/metabolism
Abstract OBJECTIVE: Nocturnal rodents are frequently used as models in human breast cancer research, but these species have very different visual and circadian systems and, therefore, very different responses to optical radiation or, informally, light. Because of the impact of light on the circadian system and because recent evidence suggests that cancer risk might be related to circadian disruption, it is becoming increasingly clear that optical radiation must be properly characterized for both nocturnal rodents and diurnal humans to make significant progress in unraveling links between circadian disruption and breast cancer. In this paper, we propose a quantitative framework for comparing radiometric and photometric quantities in human and rodent studies. METHODS: We reviewed published research on light as a circadian stimulus for humans and rodents. Both suppression of nocturnal melatonin and phase shifting were examined as outcome measures for the circadian system. RESULTS: The data were used to develop quantitative comparisons regarding the absolute and spectral sensitivity for the circadian systems of humans and nocturnal rodents. CONCLUSIONS: Two models of circadian phototransduction, for mouse and humans, have been published providing spectral sensitivities for these two species. Despite some methodological variations among the studies reviewed, the circadian systems of nocturnal rodents are approximately 10,000 times more sensitive to optical radiation than that of humans. Circadian effectiveness of different sources for both humans and nocturnal rodents are offered together with a scale relating their absolute sensitivities. Instruments calibrated in terms of conventional photometric units (e.g., lux) will not accurately characterize the circadian stimulus for either humans or rodents.
Address Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA. bulloj@rpi.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0957-5243 ISBN Medium
Area Expedition Conference
Notes PMID:16596289 Approved no
Call Number LoNNe @ kagoburian @ Serial 726
Permanent link to this record