|   | 
Details
   web
Records
Author Solano Lamphar, H.A.; Kocifaj, M.
Title Light pollution in ultraviolet and visible spectrum: effect on different visual perceptions Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 2 Pages (down) e56563
Keywords Lighting; Animals; *Environmental Pollution; Humans; Insects; Light; Lighting/*adverse effects; Models, Theoretical; *Visual Perception
Abstract In general terms, lighting research has been focused in the development of artificial light with the purpose of saving energy and having more durable lamps. However, the consequences that artificial night lighting could bring to the human being and living organisms have become an important issue recently. Light pollution represents a significant problem to both the environment and human health causing a disruption of biological rhythms related not only to the visible spectrum, but also to other parts of the electromagnetic spectrum. Since the lamps emit across a wide range of the electromagnetic spectrum, all photobiological species may be exposed to another type of light pollution. By comparing five different lamps, the present study attempts to evaluate UV radiative fluxes relative to what humans and two species of insects perceive as sky glow level. We have analyzed three atmospheric situations: clear sky, overcast sky and evolving precipitable water content. One important finding suggests that when a constant illuminance of urban spaces has to be guaranteed the sky glow from the low pressure sodium lamps has the most significant effect to the visual perception of the insects tested. But having the fixed number of luminaires the situation changes and the low pressure sodium lamp would be the best choice for all three species. The sky glow effects can be interpreted correctly only if the lamp types and the required amount of scotopic luxes at the ground are taken into account simultaneously. If these two factors are combined properly, then the ecological consequences of sky glow can be partly reduced. The results of this research may be equally useful for lighting engineers, architects, biologists and researchers who are studying the effects of sky glow on humans and biodiversity.
Address ICA, Slovak Academy of Sciences, Bratislava, Slovak Republic. lamphar@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23441205; PMCID:PMC3575508 Approved no
Call Number LoNNe @ schroer @ Serial 578
Permanent link to this record
 

 
Author Falchi, F.; Cinzano, P.; Elvidge, C.D.; Keith, D.M.; Haim, A.
Title Limiting the impact of light pollution on human health, environment and stellar visibility Type Journal Article
Year 2011 Publication Journal of Environmental Management Abbreviated Journal J Environ Manage
Volume 92 Issue 10 Pages (down) 2714-2722
Keywords Animals; Animals, Wild; Conservation of Natural Resources; Environment; *Environmental Pollution; Eye; *Health; Humans; Lighting/*adverse effects/standards; Melatonin/*antagonists & inhibitors; Sodium; Vision, Ocular/*physiology; Visual Perception
Abstract Light pollution is one of the most rapidly increasing types of environmental degradation. Its levels have been growing exponentially over the natural nocturnal lighting levels provided by starlight and moonlight. To limit this pollution several effective practices have been defined: the use of shielding on lighting fixture to prevent direct upward light, particularly at low angles above the horizon; no over lighting, i.e. avoid using higher lighting levels than strictly needed for the task, constraining illumination to the area where it is needed and the time it will be used. Nevertheless, even after the best control of the light distribution is reached and when the proper quantity of light is used, some upward light emission remains, due to reflections from the lit surfaces and atmospheric scatter. The environmental impact of this “residual light pollution”, cannot be neglected and should be limited too. Here we propose a new way to limit the effects of this residual light pollution on wildlife, human health and stellar visibility. We performed analysis of the spectra of common types of lamps for external use, including the new LEDs. We evaluated their emissions relative to the spectral response functions of human eye photoreceptors, in the photopic, scotopic and the 'meltopic' melatonin suppressing bands. We found that the amount of pollution is strongly dependent on the spectral characteristics of the lamps, with the more environmentally friendly lamps being low pressure sodium, followed by high pressure sodium. Most polluting are the lamps with a strong blue emission, like Metal Halide and white LEDs. Migration from the now widely used sodium lamps to white lamps (MH and LEDs) would produce an increase of pollution in the scotopic and melatonin suppression bands of more than five times the present levels, supposing the same photopic installed flux. This increase will exacerbate known and possible unknown effects of light pollution on human health, environment and on visual perception of the Universe by humans. We present quantitative criteria to evaluate the lamps based on their spectral emissions and we suggest regulatory limits for future lighting.
Address Istituto di Scienza e Tecnologia dell'Inquinamento Luminoso, Via Roma 13, I-36106 Thiene, Italy. falchi@lightpollution.it
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0301-4797 ISBN Medium
Area Expedition Conference
Notes PMID:21745709 Approved no
Call Number IDA @ john @ Serial 131
Permanent link to this record
 

 
Author Pun, C.S.J.; So, C.W.
Title Night-sky brightness monitoring in Hong Kong: a city-wide light pollution assessment Type Journal Article
Year 2012 Publication Environmental Monitoring and Assessment Abbreviated Journal Environ Monit Assess
Volume 184 Issue 4 Pages (down) 2537-2557
Keywords *Cities; Environmental Monitoring/instrumentation/*methods; *Environmental Pollution; Hong Kong; Humans; *Light
Abstract Results of the first comprehensive light pollution survey in Hong Kong are presented. The night-sky brightness was measured and monitored around the city using a portable light-sensing device called the Sky Quality Meter over a 15-month period beginning in March 2008. A total of 1,957 data sets were taken at 199 distinct locations, including urban and rural sites covering all 18 Administrative Districts of Hong Kong. The survey shows that the environmental light pollution problem in Hong Kong is severe-the urban night skies (sky brightness at 15.0 mag arcsec(- 2)) are on average ~ 100 times brighter than at the darkest rural sites (20.1 mag arcsec(- 2)), indicating that the high lighting densities in the densely populated residential and commercial areas lead to light pollution. In the worst polluted urban location studied, the night-sky at 13.2 mag arcsec(- 2) can be over 500 times brighter than the darkest sites in Hong Kong. The observed night-sky brightness is found to be affected by human factors such as land utilization and population density of the observation sites, together with meteorological and/or environmental factors. Moreover, earlier night skies (at 9:30 p.m. local time) are generally brighter than later time (at 11:30 p.m.), which can be attributed to some public and commercial lightings being turned off later at night. On the other hand, no concrete relationship between the observed sky brightness and air pollutant concentrations could be established with the limited survey sampling. Results from this survey will serve as an important database for the public to assess whether new rules and regulations are necessary to control the use of outdoor lightings in Hong Kong.
Address Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong, PR China. jcspun@hku.hk
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0167-6369 ISBN Medium
Area Expedition Conference
Notes PMID:21713499 Approved no
Call Number IDA @ john @ Serial 258
Permanent link to this record