|   | 
Details
   web
Records
Author Fonken, L.K.; Aubrecht, T.G.; Melendez-Fernandez, O.H.; Weil, Z.M.; Nelson, R.J.
Title Dim light at night disrupts molecular circadian rhythms and increases body weight Type Journal Article
Year 2013 Publication Journal of Biological Rhythms Abbreviated Journal J Biol Rhythms
Volume 28 Issue 4 Pages 262-271
Keywords Animals; Blood Glucose/metabolism; Body Weight/*physiology; CLOCK Proteins/biosynthesis/genetics; Circadian Rhythm/*physiology; Corticosterone/metabolism; Feeding Behavior/physiology; Immunohistochemistry; Light; *Lighting; Male; Mice; Motor Activity; Polymerase Chain Reaction; Suprachiasmatic Nucleus/metabolism/physiology; clock genes; feeding rhythm; light pollution; obesity
Abstract (down) With the exception of high latitudes, life has evolved under bright days and dark nights. Most organisms have developed endogenously driven circadian rhythms that are synchronized to this daily light/dark cycle. In recent years, humans have shifted away from the naturally occurring solar light cycle in favor of artificial and sometimes irregular light schedules produced by electric lighting. Exposure to unnatural light cycles is increasingly associated with obesity and metabolic syndrome; however, the means by which environmental lighting alters metabolism are poorly understood. Thus, we exposed mice to dim light at night and investigated changes in the circadian system and metabolism. Here we report that exposure to ecologically relevant levels of dim (5 lux) light at night altered core circadian clock rhythms in the hypothalamus at both the gene and protein level. Circadian rhythms in clock expression persisted during light at night; however, the amplitude of Per1 and Per2 rhythms was attenuated in the hypothalamus. Circadian oscillations were also altered in peripheral tissues critical for metabolic regulation. Exposure to dimly illuminated, as compared to dark, nights decreased the rhythmic expression in all but one of the core circadian clock genes assessed in the liver. Additionally, mice exposed to dim light at night attenuated Rev-Erb expression in the liver and adipose tissue. Changes in the circadian clock were associated with temporal alterations in feeding behavior and increased weight gain. These results are significant because they provide evidence that mild changes in environmental lighting can alter circadian and metabolic function. Detailed analysis of temporal changes induced by nighttime light exposure may provide insight into the onset and progression of obesity and metabolic syndrome, as well as other disorders involving sleep and circadian rhythm disruption.
Address Department of Neuroscience and Institute for Behavioral Medicine Research, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA. fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0748-7304 ISBN Medium
Area Expedition Conference
Notes PMID:23929553; PMCID:PMC4033305 Approved no
Call Number IDA @ john @ Serial 28
Permanent link to this record
 

 
Author Rockhill, A.P.; DePerno, C.S.; Powell, R.A.
Title The effect of illumination and time of day on movements of bobcats (Lynx rufus) Type Journal Article
Year 2013 Publication PloS one Abbreviated Journal PLoS One
Volume 8 Issue 7 Pages e69213
Keywords Animals; Female; *Lighting; Lynx/*physiology; Male; Moon; Movement/*physiology; North Carolina; Time Factors; Wetlands
Abstract (down) Understanding behavioral changes of prey and predators based on lunar illumination provides insight into important life history, behavioral ecology, and survival information. The objectives of this research were to determine if bobcat movement rates differed by period of day (dark, moon, crepuscular, day), lunar illumination (<10%, 10 – <50%, 50 – <90%, >90%), and moon phase (new, full). Bobcats had high movement rates during crepuscular and day periods and low movement rates during dark periods with highest nighttime rates at 10-<50% lunar illumination. Bobcats had highest movement rates during daytime when nighttime illumination was low (new moon) and higher movement rates during nighttime when lunar illumination was high (full moon). The behaviors we observed are consistent with prey availability being affected by light level and by limited vision by bobcats during darkness.
Address Fisheries, Wildlife, and Conservation Biology, North Carolina State University, Raleigh, North Carolina, USA. aimee_rockhill@ncsu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1932-6203 ISBN Medium
Area Expedition Conference
Notes PMID:23861963; PMCID:PMC3704646 Approved no
Call Number IDA @ john @ Serial 84
Permanent link to this record
 

 
Author Wanvik, P.O.
Title Effects of road lighting: an analysis based on Dutch accident statistics 1987-2006 Type Journal Article
Year 2009 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 41 Issue 1 Pages 123-128
Keywords Accidents, Traffic/*statistics & numerical data; Automobile Driving/*statistics & numerical data; Confidence Intervals; Cross-Sectional Studies; Humans; *Lighting; Netherlands; Odds Ratio; Risk Factors; Safety; *Visual Fields
Abstract (down) This study estimates the safety effect of road lighting on accidents in darkness on Dutch roads, using data from an interactive database containing 763,000 injury accidents and 3.3 million property damage accidents covering the period 1987-2006. Two estimators of effect are used, and the results are combined by applying techniques of meta-analysis. Injury accidents are reduced by 50%. This effect is larger than the effects found in most of the earlier studies. The effect on fatal accidents is slightly larger than the effect on injury accidents. The effect during twilight is about 2/3 of the effect in darkness. The effect of road lighting is significantly smaller during adverse weather and road surface conditions than during fine conditions. The effects on pedestrian, bicycle and moped accidents are significantly larger than the effects on automobile and motorcycle accidents. The risk of injury accidents was found to increase in darkness. The average increase in risk was estimated to 17% on lit rural roads and 145% on unlit rural roads. The average increase in risk during rainy conditions is about 50% on lit rural roads and about 190% on unlit rural roads. The average increase in risk with respect to pedestrian accidents is about 140% on lit rural roads and about 360% on unlit rural roads.
Address Norwegian Public Roads Administration, Region South, Serviceboks 723, 4808 Arendal, Norway. per.wanvik@vegvesen.no
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:19114146 Approved no
Call Number IDA @ john @ Serial 250
Permanent link to this record
 

 
Author Kuhn, L.; Johansson, M.; Laike, T.; Goven, T.
Title Residents' perceptions following retrofitting of residential area outdoor lighting with LEDs Type Journal Article
Year 2013 Publication Lighting Research and Technology Abbreviated Journal Lighting Research and Technology
Volume 45 Issue 5 Pages 568-584
Keywords *Lighting; outdoor lighting; LED; light emitting diode; lighting levels; public opinion
Abstract (down) The use of light emitting diodes (LEDs) in outdoor lighting has energy-saving potential, but users’ responses to this light source are largely unknown. An intervention study in two residential areas compared conventional lighting installations (high pressure sodium in Area 1 and high pressure mercury in Area 2) to a retrofitted LED-alternative regarding residents’ perceptions of quality of light, visual accessibility and danger. Moreover, energy use was calculated. Residents’ (N&#8201;=&#8201;60) visual accessibility improved and perceived danger remained low in both areas after retrofitting. In Area 2 the perceived quality of light increased, whereas in Area 1 the results were mixed. The retrofitted application reduced energy use by 41–76% and might be a feasible alternative to conventional outdoor lighting in relatively safe areas.
Address Environmental Psychology, Department of Architecture and Built Environment, Lund University, Lund, Sweden
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1477-1535 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 280
Permanent link to this record
 

 
Author Wright, K.P.J.; McHill, A.W.; Birks, B.R.; Griffin, B.R.; Rusterholz, T.; Chinoy, E.D.
Title Entrainment of the human circadian clock to the natural light-dark cycle Type Journal Article
Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 23 Issue 16 Pages 1554-1558
Keywords Human Health; Adult; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight; Young Adult; Circadian Rhythm
Abstract (down) The electric light is one of the most important human inventions. Sleep and other daily rhythms in physiology and behavior, however, evolved in the natural light-dark cycle [1], and electrical lighting is thought to have disrupted these rhythms. Yet how much the age of electrical lighting has altered the human circadian clock is unknown. Here we show that electrical lighting and the constructed environment is associated with reduced exposure to sunlight during the day, increased light exposure after sunset, and a delayed timing of the circadian clock as compared to a summer natural 14 hr 40 min:9 hr 20 min light-dark cycle camping. Furthermore, we find that after exposure to only natural light, the internal circadian clock synchronizes to solar time such that the beginning of the internal biological night occurs at sunset and the end of the internal biological night occurs before wake time just after sunrise. In addition, we find that later chronotypes show larger circadian advances when exposed to only natural light, making the timing of their internal clocks in relation to the light-dark cycle more similar to earlier chronotypes. These findings have important implications for understanding how modern light exposure patterns contribute to late sleep schedules and may disrupt sleep and circadian clocks.
Address Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309-0354, USA. kenneth.wright@colorado.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:23910656; PMCID:PMC4020279 Approved no
Call Number LoNNe @ christopher.kyba @ Serial 505
Permanent link to this record