|   | 
Details
   web
Records
Author Gooley, J.J.; Chamberlain, K.; Smith, K.A.; Khalsa, S.B.S.; Rajaratnam, S.M.W.; Van Reen, E.; Zeitzer, J.M.; Czeisler, C.A.; Lockley, S.W.
Title Exposure to room light before bedtime suppresses melatonin onset and shortens melatonin duration in humans Type Journal Article
Year 2011 Publication The Journal of Clinical Endocrinology and Metabolism Abbreviated Journal J Clin Endocrinol Metab
Volume 96 Issue 3 Pages E463-72
Keywords Adolescent; Adult; Female; Humans; *Light; *Lighting; Male; Melatonin/*blood; Sleep/physiology; Time Factors; Young Adult
Abstract (up) CONTEXT: Millions of individuals habitually expose themselves to room light in the hours before bedtime, yet the effects of this behavior on melatonin signaling are not well recognized. OBJECTIVE: We tested the hypothesis that exposure to room light in the late evening suppresses the onset of melatonin synthesis and shortens the duration of melatonin production. DESIGN: In a retrospective analysis, we compared daily melatonin profiles in individuals living in room light (<200 lux) vs. dim light (<3 lux). PATIENTS: Healthy volunteers (n = 116, 18-30 yr) were recruited from the general population to participate in one of two studies. SETTING: Participants lived in a General Clinical Research Center for at least five consecutive days. INTERVENTION: Individuals were exposed to room light or dim light in the 8 h preceding bedtime. OUTCOME MEASURES: Melatonin duration, onset and offset, suppression, and phase angle of entrainment were determined. RESULTS: Compared with dim light, exposure to room light before bedtime suppressed melatonin, resulting in a later melatonin onset in 99.0% of individuals and shortening melatonin duration by about 90 min. Also, exposure to room light during the usual hours of sleep suppressed melatonin by greater than 50% in most (85%) trials. CONCLUSIONS: These findings indicate that room light exerts a profound suppressive effect on melatonin levels and shortens the body's internal representation of night duration. Hence, chronically exposing oneself to electrical lighting in the late evening disrupts melatonin signaling and could therefore potentially impact sleep, thermoregulation, blood pressure, and glucose homeostasis.
Address Division of Sleep Medicine, Brigham and Women's Hospital and Harvard Medical School, 221 Longwood Avenue, Boston, Massachusetts 02115, USA. gmsjjg@nus.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0021-972X ISBN Medium
Area Expedition Conference
Notes PMID:21193540; PMCID:PMC3047226 Approved no
Call Number IDA @ john @ Serial 139
Permanent link to this record
 

 
Author Kyba, C.C.M.; Hänel, A.; Hölker, F.
Title Redefining efficiency for outdoor lighting Type Journal Article
Year 2014 Publication Energy & Environmental Science Abbreviated Journal Energy Environ. Sci.
Volume 7 Issue 6 Pages 1806
Keywords *Lighting; outdoor lighting; luminous efficiency; lighting standards; public policy; illuminance; street lighting
Abstract (up) Improvements in the luminous efficiency of outdoor lamps might not result in energy savings or reductions in greenhouse gas emissions. The reason for this is a rebound effect: when light becomes cheaper, many users will increase illumination, and some previously unlit areas may become lit. We present three policy recommendations that work together to guarantee major energy reductions in street lighting systems. First, taking advantage of new technologies to use light only when and where it is needed. Second, defining maximum permitted illuminances for roadway lighting. Third, defining street lighting system efficiency in terms of kilowatt hours per kilometer per year. Adoption of these policies would not only save energy, but would greatly reduce the amount of light pollution produced by cities. The goal of lighting policy should be to provide the light needed for any given task while minimizing both the energy use and negative environmental side effects of the light.
Address Leibniz Institute of Freshwater Ecology and Inland Fisheries, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1754-5692 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 244
Permanent link to this record
 

 
Author Bennett, S.; Alpert, M.; Kubulins, V.; Hansler, R.L.
Title Use of modified spectacles and light bulbs to block blue light at night may prevent postpartum depression Type Journal Article
Year 2009 Publication Medical Hypotheses Abbreviated Journal Med Hypotheses
Volume 73 Issue 2 Pages 251-253
Keywords Depression, Postpartum/*prevention & control; *Eyeglasses; Female; Humans; *Lighting; blue light; light therapy; blue blocker
Abstract (up) In 2001 it was discovered that exposing the eyes to light in the blue end of the visible spectrum suppresses the production of the sleep hormone, melatonin. New mothers need to get up during the night to care for their babies. This is the time when melatonin is normally flowing. Exposing their eyes to light can cut off the flow. It may also reset their circadian (internal) clock. On subsequent nights the melatonin may not begin flowing at the normal time making it difficult to fall asleep. Over time, disruption of the circadian rhythm plus sleep deprivation may result in depression. Women suffering postpartum depression were enrolled in a small clinical trial. Some were provided with glasses and light bulbs that block blue light. Others were equipped with glasses and light bulbs that looked colored but did not block the rays causing melatonin suppression. Those with the “real glasses” recovered somewhat more quickly than those with the placebo glasses and light bulbs. The hypothesis that should be tested in large scale clinical trials is that the risk of postpartum depression can be reduced when a new mother avoids exposing her eyes to blue light when she gets up at night to care for her baby. In the meantime, all new mothers may benefit from using glasses and light bulbs that block blue light when getting up at night to care for their babies.
Address Postpartum Support, International P.O. Box 60931, Santa Barbara, CA 93160, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-9877 ISBN Medium
Area Expedition Conference
Notes PMID:19329259 Approved no
Call Number IDA @ john @ Serial 296
Permanent link to this record
 

 
Author Lerchl, A.; Schindler, C.; Eichhorn, K.; Kley, F.; Erren, T.C.
Title Indirect blue light does not suppress nocturnal salivary melatonin in humans in an automobile setting Type Journal Article
Year 2009 Publication Journal of Pineal Research Abbreviated Journal J Pineal Res
Volume 47 Issue 2 Pages 143-146
Keywords Human Health; Adolescent; Adult; *Automobiles; Circadian Rhythm/physiology; Humans; *Lighting; Male; Melatonin/metabolism/*secretion; Salivary Glands/*secretion; Statistics, Nonparametric
Abstract (up) In 2007, the International Agency for Research on Cancer (IARC) classified shift work that involves circadian disruption as being probably carcinogenic to humans (Group 2A). In this context, light exposure during the night plays a key role because it can suppress nocturnal melatonin levels when exposures exceed a certain threshold. Blue light around 464 nm is most effective in suppressing melatonin because of the spectral sensitivity of melanopsin, a recently discovered photopigment in retinal ganglion cells; the axons of these cells project to the suprachiasmatic nucleus, a circadian master clock in the brain. Due to advances in light technologies, normal tungsten light bulbs are being replaced by light-emitting diodes which produce quasi-monochromatic or white light. The objective of this study was to assess whether the light-melanopsin-melatonin axis might be affected in automobiles at night which employ the new generation diodes. To this end, we have tested in an experimental automobile setting whether indirect blue light (lambda(max) = 465 nm) at an intensity of 0.22 or 1.25 lx can suppress salivary melatonin levels in 12 male volunteers (age range 17-27 years) who served as their own controls. Daytime levels were low (2.7 +/- 0.5 pg/mL), and night-time levels without light exposure were high (14.5 +/- 1.1 pg/mL), as expected. Low-intensity light exposures had no significant effect on melatonin levels (0.22 lx: 17.2 +/- 2.8 pg/mL; P > 0.05; 1.25 lx: 12.6 +/- 2.0 pg/mL; P > 0.05). It is concluded that indirect blue light exposures in automobiles up to 1.25 lx do not cause unintentional chronodisruption via melatonin suppression.
Address School of Engineering and Science, Jacobs University, D-28759 Bremen, Germany. a.lerchl@jacobs-university.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-3098 ISBN Medium
Area Expedition Conference
Notes PMID:19555449 Approved no
Call Number LoNNe @ kagoburian @ Serial 777
Permanent link to this record
 

 
Author Evans, J.A.; Carter, S.N.; Freeman, D.A.; Gorman, M.R.
Title Dim nighttime illumination alters photoperiodic responses of hamsters through the intergeniculate leaflet and other photic pathways Type Journal Article
Year 2012 Publication Neuroscience Abbreviated Journal Neuroscience
Volume 202 Issue Pages 300-308
Keywords Animals; Biological Clocks/physiology; Circadian Rhythm/physiology; Cricetinae; Darkness; Data Interpretation, Statistical; Geniculate Bodies/*physiology; *Lighting; Male; Motor Activity/physiology; Phodopus; *Photoperiod; Visual Pathways/*physiology
Abstract (up) In mammals, light entrains the central pacemaker within the suprachiasmatic nucleus (SCN) through both a direct neuronal projection from the retina and an indirect projection from the intergeniculate leaflet (IGL) of the thalamus. Although light comparable in intensity to moonlight is minimally effective at resetting the phase of the circadian clock, dimly lit and completely dark nights are nevertheless perceived differentially by the circadian system, even when nighttime illumination is below putative thresholds for phase resetting. Under a variety of experimental paradigms, dim nighttime illumination exerts effects that may be characterized as enhancing the plasticity of circadian entrainment. For example, relative to completely dark nights, dimly lit nights accelerate development of photoperiodic responses of Siberian hamsters transferred from summer to winter day lengths. Here we assess the neural pathways underlying this response by testing whether IGL lesions eliminate the effects of dim nighttime illumination under short day lengths. Consistent with previous work, dimly lit nights facilitated the expansion of activity duration under short day lengths. Ablation of the IGL, moreover, did not influence photoperiodic responses in animals held under completely dark nights. However, among animals that were provided dimly lit nights, IGL lesions prevented the short-day typical expansion of activity duration as well as the seasonally appropriate gonadal regression and reduction in body weight. Thus, the present data indicate that the IGL plays a central role in mediating the facilitative effects of dim nighttime illumination under short day lengths, but in the absence of the IGL, dim light at night influences photoperiodic responses through residual photic pathways.
Address Department of Psychology, University of California, San Diego, La Jolla, CA, USA. jevans@msm.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-4522 ISBN Medium
Area Expedition Conference
Notes PMID:22155265; PMCID:PMC3578228 Approved no
Call Number IDA @ john @ Serial 87
Permanent link to this record