|   | 
Details
   web
Records
Author Vetter, C.; Juda, M.; Lang, D.; Wojtysiak, A.; Roenneberg, T.
Title Blue-enriched office light competes with natural light as a zeitgeber Type Journal Article
Year 2011 Publication Scandinavian Journal of Work, Environment & Health Abbreviated Journal Scand J Work Environ Health
Volume 37 Issue 5 Pages 437-445
Keywords *Circadian Rhythm; *Color; Humans; *Lighting; *Occupational Health; Sleep; Wakefulness; blue light; circadian disruption; Circadian rhythm; sleep
Abstract OBJECTIVES: Circadian regulation of human physiology and behavior (eg, body temperature or sleep-timing), depends on the “zeitgeber” light that synchronizes them to the 24-hour day. This study investigated the effect of changing light temperature at the workplace from 4000 Kelvin (K) to 8000 K on sleep-wake and activity-rest behavior. METHODS: An experimental group (N=27) that experienced the light change was compared with a non-intervention group (N=27) that remained in the 4000 K environment throughout the 5-week study period (14 January to 17 February). Sleep logs and actimetry continuously assessed sleep-wake behavior and activity patterns. RESULTS: Over the study period, the timing of sleep and activity on free days steadily advanced parallel to the seasonal progression of sunrise in the non-intervention group. In contrast, the temporal pattern of sleep and activity in the experimental group remained associated with the constant onset of work. CONCLUSION: The results suggest that artificial blue-enriched light competes with natural light as a zeitgeber. While subjects working under the warmer light (4000 K) appear to entrain (or synchronize) to natural dawn, the subjects who were exposed to blue-enriched (8000 K) light appear to entrain to office hours. The results confirm that light is the dominant zeitgeber for the human clock and that its efficacy depends on spectral composition. The results also indicate that blue-enriched artificial light is a potent zeitgeber that has to be used with diligence.
Address Institute for Medical Psychology, Centre of Chronobiology, Ludwig-Maximilians-Universitat, Munich, Germany
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0355-3140 ISBN Medium
Area Expedition Conference
Notes PMID:21246176 Approved no
Call Number (up) IDA @ john @ Serial 350
Permanent link to this record
 

 
Author Bará, S.
Title Light pollution and solid-state lighting: reducing the carbon dioxide footprint is not enough Type Journal Article
Year 2014 Publication Proc. SPIE 8785, 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications, 87852G, 2013 Abbreviated Journal Proc. SPIE 8785
Volume 8785 Issue Pages
Keywords *Lighting; LED; light emitting diode; outdoor lighting; artificial light at night; lighting policy; solid-state lighting; blue light
Abstract Public and private lighting account for a relevant share of the overall electric power consumption worldwide. The pressing need of reducing the carbon dioxide emissions as well as of lowering the lumen•hour price tag has fostered the search for alternative lighting technologies to substitute for the incandescent and gas-discharge based lamps. The most successful approach to date, solid-state lighting, is already finding its way into the public lighting market, very often helped by substantial public investments and support. LED-based sources have distinct advantages: under controlled conditions their efficacy equals or surpasses that of conventional solutions, their small source size allows for an efficient collimation of the lightbeam (delivering the photons where they are actually needed and reducing lightspill on the surrounding areas), and they can be switched and/or dimmed on demand at very high rates, thus allowing for a tailored schedule of lighting. However, energy savings and carbon dioxide reduction are not the only crucial issues faced by present day lighting. A growing body of research has shown the significance of the spectral composition of light when it comes to assess the detrimental effects of artificial light-at-night (ALAN). The potential ALAN blueshift associated to the deployment of LED-based lighting systems has raised sensible concerns about its scientific, cultural, ecological and public health consequences, which can be further amplified if an increased light consumption is produced due to the rebound effect. This contribution addresses some of the challenges that these issues pose to the Optics and Photonics community.
Address Univ. de Santiago de Compostela, Spain; salva.bara@usc.es
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number (up) IDA @ john @ Serial 1135
Permanent link to this record
 

 
Author Kamrowski, R.L.; Sutton, S.G.; Tobin, R.C.; Hamann, M.
Title Potential applicability of persuasive communication to light-glow reduction efforts: a case study of marine turtle conservation Type Journal Article
Year 2014 Publication Environmental Management Abbreviated Journal Environ Manage
Volume 54 Issue 3 Pages 583-595
Keywords Society; Adolescent; Adult; Aged; Aged, 80 and over; Animals; *Conservation of Natural Resources; Culture; Female; Humans; *Lighting; Male; Middle Aged; Persuasive Communication; Public Opinion; Queensland; Questionnaires; *Turtles; Young Adult
Abstract Artificial lighting along coastlines poses a significant threat to marine turtles due to the importance of light for their natural orientation at the nesting beach. Effective lighting management requires widespread support and participation, yet engaging the public with light reduction initiatives is difficult because benefits associated with artificial lighting are deeply entrenched within modern society. We present a case study from Queensland, Australia, where an active light-glow reduction campaign has been in place since 2008 to protect nesting turtles. Semi-structured questionnaires explored community beliefs about reducing light and evaluated the potential for using persuasive communication techniques based on the theory of planned behavior (TPB) to increase engagement with light reduction. Respondents (n = 352) had moderate to strong intentions to reduce light. TPB variables explained a significant proportion of variance in intention (multiple regression: R (2) = 0.54-0.69, P < 0.001), but adding a personal norm variable improved the model (R (2) = 0.73-0.79, P < 0.001). Significant differences in belief strength between campaign compliers and non-compliers suggest that targeting the beliefs reducing light leads to “increased protection of local turtles” (P < 0.01) and/or “benefits to the local economy” (P < 0.05), in combination with an appeal to personal norms, would produce the strongest persuasion potential for future communications. Selective legislation and commitment strategies may be further useful strategies to increase community light reduction. As artificial light continues to gain attention as a pollutant, our methods and findings will be of interest to anyone needing to manage public artificial lighting.
Address School of Earth and Environmental Sciences, James Cook University, Townsville, QLD, 4811, Australia, ruth.kamrowski(at)my.jcu.edu.au
Corporate Author Thesis
Publisher Springer Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0364-152X ISBN Medium
Area Expedition Conference
Notes PMID:24957580 Approved no
Call Number (up) IDA @ john @ Serial 1283
Permanent link to this record
 

 
Author Zukauskas, A.; Vaicekauskas, R.; Vitta, P.
Title Optimization of solid-state lamps for photobiologically friendly mesopic lighting Type Journal Article
Year 2012 Publication Applied Optics Abbreviated Journal Appl Opt
Volume 51 Issue 35 Pages 8423-8432
Keywords Lighting Systems; Circadian Rhythm; Color; Equipment Design; Humans; Light; *Lighting; Melatonin/metabolism; Photobiology/*methods; Semiconductors; Time Factors; Vision, Ocular
Abstract The circadian and visual-performance-based mesopic systems of photometry were applied for the optimization of the spectral power distributions (SPDs) of the solid-state sources of light for low-illuminance lighting applications. At mesopic adaptation luminances typical of outdoor lighting (0.1-2 cd/m(2)), the optimal SPDs were obtained through the minimization of the mesopic circadian action factor, which is the ratio of the circadian efficacy of radiation to mesopic luminous efficacy of radiation. For correlated color temperatures below ~3000 K, the optimized dichromatic light-emitting diodes (LEDs) are shown to pose a lower circadian hazard than high-pressure sodium lamps and common warm white LEDs; also they are potentially more efficacious and have acceptable color rendition properties under mesopic conditions.
Address Institute of Applied Research, Vilnius University, Sauletekio al. 9-III, Vilnius LT-10222, Lithuania. arturas.zukauskas@ff.vu.lt
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0003-6935 ISBN Medium
Area Expedition Conference
Notes PMID:23262538 Approved no
Call Number (up) LoNNe @ christopher.kyba @ Serial 448
Permanent link to this record
 

 
Author Kantermann, T.
Title Circadian biology: sleep-styles shaped by light-styles Type Journal Article
Year 2013 Publication Current Biology : CB Abbreviated Journal Curr Biol
Volume 23 Issue 16 Pages R689-90
Keywords Human Health; Circadian Clocks/*radiation effects; Female; Humans; *Lighting; Male; *Photoperiod; *Sunlight
Abstract Light and darkness are the main time cues synchronising all biological clocks to the external environment. This little understood evolutionary phenomenon is called circadian entrainment. A new study illuminates our understanding of how modern light- and lifestyles compromise circadian entrainment and impact our biological clocks.
Address Chronobiology – Centre for Behaviour and Neurosciences, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands. thomas@kantermann.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0960-9822 ISBN Medium
Area Expedition Conference
Notes PMID:23968925 Approved no
Call Number (up) LoNNe @ christopher.kyba @ Serial 501
Permanent link to this record