|   | 
Details
   web
Records
Author Evans, J.A.; Carter, S.N.; Freeman, D.A.; Gorman, M.R.
Title Dim nighttime illumination alters photoperiodic responses of hamsters through the intergeniculate leaflet and other photic pathways Type Journal Article
Year 2012 Publication Neuroscience Abbreviated Journal Neuroscience
Volume 202 Issue (up) Pages 300-308
Keywords Animals; Biological Clocks/physiology; Circadian Rhythm/physiology; Cricetinae; Darkness; Data Interpretation, Statistical; Geniculate Bodies/*physiology; *Lighting; Male; Motor Activity/physiology; Phodopus; *Photoperiod; Visual Pathways/*physiology
Abstract In mammals, light entrains the central pacemaker within the suprachiasmatic nucleus (SCN) through both a direct neuronal projection from the retina and an indirect projection from the intergeniculate leaflet (IGL) of the thalamus. Although light comparable in intensity to moonlight is minimally effective at resetting the phase of the circadian clock, dimly lit and completely dark nights are nevertheless perceived differentially by the circadian system, even when nighttime illumination is below putative thresholds for phase resetting. Under a variety of experimental paradigms, dim nighttime illumination exerts effects that may be characterized as enhancing the plasticity of circadian entrainment. For example, relative to completely dark nights, dimly lit nights accelerate development of photoperiodic responses of Siberian hamsters transferred from summer to winter day lengths. Here we assess the neural pathways underlying this response by testing whether IGL lesions eliminate the effects of dim nighttime illumination under short day lengths. Consistent with previous work, dimly lit nights facilitated the expansion of activity duration under short day lengths. Ablation of the IGL, moreover, did not influence photoperiodic responses in animals held under completely dark nights. However, among animals that were provided dimly lit nights, IGL lesions prevented the short-day typical expansion of activity duration as well as the seasonally appropriate gonadal regression and reduction in body weight. Thus, the present data indicate that the IGL plays a central role in mediating the facilitative effects of dim nighttime illumination under short day lengths, but in the absence of the IGL, dim light at night influences photoperiodic responses through residual photic pathways.
Address Department of Psychology, University of California, San Diego, La Jolla, CA, USA. jevans@msm.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0306-4522 ISBN Medium
Area Expedition Conference
Notes PMID:22155265; PMCID:PMC3578228 Approved no
Call Number IDA @ john @ Serial 87
Permanent link to this record
 

 
Author Ho, C.Y.; Lin, H.T.; Huang, K.Y.
Title A Study on Energy Saving and Light Pollution of LED Advertising Signs Type Journal Article
Year 2011 Publication Applied Mechanics and Materials Abbreviated Journal Amm
Volume 121-126 Issue (up) Pages 2979-2984
Keywords Advertising Sign; LED; Light Trespass; Luminance Limit; Saving Energy; Vertical Illuminance; *Lighting
Abstract Lighting advertising signs not only play an important role in outdoor lighting environment in Taiwan, but also become the main factor of energy consumption in urban areas at night. Light-emitting diode (LED) has been gradually used in advertising signs due to its advantages. However, in order to be conspicuous and legible in the daytime, signs that are excessively bright may result in considerable light pollution and energy waste at nighttime. Therefore, this research aims to measure the luminance of LED signs and traditional internally lighted signs, and analyze the light trespass from each signage. Based on the research results, the energy consumption from a LED full color screen is 12 times more than a traditional internally lighted sign per day. Statistically, all kinds of LED signs are much higher than traditional internally lighted signs in the percentage of excessive brightness and average luminance value. As for the light trespass, since the vertical illuminance on facade facing the signs increases with the increase of the sign area or the decrease of the distance between the sign and the facade, the vertical illuminance on facade facing the signs would exceed the limit of CIE even if the luminance of the signs achieves the standard of CIE in terms of the general conditions in Taiwan. This happens to LED full color screens in particular and thus results in considerable obtrusive light. To sum up, in order to reduce unnecessary energy consumption and improve the nighttime lighting quality for outdoor environment, this research recommends the luminance limitation for light dimming of LED advertising signs should refer to the zoning, time period, and sign area.
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 1662-7482 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 126
Permanent link to this record
 

 
Author Bullough, J.D.; Donnell, E.T.; Rea, M.S.
Title To illuminate or not to illuminate: roadway lighting as it affects traffic safety at intersections Type Journal Article
Year 2013 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 53 Issue (up) Pages 65-77
Keywords Lighting; Accident Prevention/*methods; Accidents, Traffic/*prevention & control/psychology/statistics & numerical data; Cross-Sectional Studies; *Environment Design; Humans; *Lighting; Minnesota; Models, Statistical; Photoperiod; Psychomotor Performance; Regression Analysis; Safety/statistics & numerical data; Visual Perception
Abstract A two-pronged effort to quantify the impact of lighting on traffic safety is presented. In the statistical approach, the effects of lighting on crash frequency for different intersection types in Minnesota were assessed using count regression models. The models included many geometric and traffic control variables to estimate the association between lighting and nighttime and daytime crashes and the resulting night-to-day crash ratios. Overall, the presence of roadway intersection lighting was found to be associated with an approximately 12% lower night-to-day crash ratio than unlighted intersections. In the parallel analytical approach, visual performance analyses based on roadway intersection lighting practices in Minnesota were made for the same intersection types investigated in the statistical approach. The results of both approaches were convergent, suggesting that visual performance improvements from roadway lighting could serve as input for predicting improvements in crash frequency. A provisional transfer function allows transportation engineers to evaluate alternative lighting systems in the design phase so selections based on expected benefits and costs can be made.
Address Lighting Research Center, Rensselaer Polytechnic Institute, 21 Union Street, Troy, NY 12180, USA
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:23377085 Approved no
Call Number LoNNe @ kagoburian @ Serial 627
Permanent link to this record
 

 
Author Bará, S.
Title Light pollution and solid-state lighting: reducing the carbon dioxide footprint is not enough Type Journal Article
Year 2014 Publication Proc. SPIE 8785, 8th Iberoamerican Optics Meeting and 11th Latin American Meeting on Optics, Lasers, and Applications, 87852G, 2013 Abbreviated Journal Proc. SPIE 8785
Volume 8785 Issue (up) Pages
Keywords *Lighting; LED; light emitting diode; outdoor lighting; artificial light at night; lighting policy; solid-state lighting; blue light
Abstract Public and private lighting account for a relevant share of the overall electric power consumption worldwide. The pressing need of reducing the carbon dioxide emissions as well as of lowering the lumen•hour price tag has fostered the search for alternative lighting technologies to substitute for the incandescent and gas-discharge based lamps. The most successful approach to date, solid-state lighting, is already finding its way into the public lighting market, very often helped by substantial public investments and support. LED-based sources have distinct advantages: under controlled conditions their efficacy equals or surpasses that of conventional solutions, their small source size allows for an efficient collimation of the lightbeam (delivering the photons where they are actually needed and reducing lightspill on the surrounding areas), and they can be switched and/or dimmed on demand at very high rates, thus allowing for a tailored schedule of lighting. However, energy savings and carbon dioxide reduction are not the only crucial issues faced by present day lighting. A growing body of research has shown the significance of the spectral composition of light when it comes to assess the detrimental effects of artificial light-at-night (ALAN). The potential ALAN blueshift associated to the deployment of LED-based lighting systems has raised sensible concerns about its scientific, cultural, ecological and public health consequences, which can be further amplified if an increased light consumption is produced due to the rebound effect. This contribution addresses some of the challenges that these issues pose to the Optics and Photonics community.
Address Univ. de Santiago de Compostela, Spain; salva.bara@usc.es
Corporate Author Thesis
Publisher SPIE Place of Publication Editor
Language English Summary Language English Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 1135
Permanent link to this record
 

 
Author Wanvik, P.O.
Title Effects of road lighting: an analysis based on Dutch accident statistics 1987-2006 Type Journal Article
Year 2009 Publication Accident; Analysis and Prevention Abbreviated Journal Accid Anal Prev
Volume 41 Issue (up) 1 Pages 123-128
Keywords Accidents, Traffic/*statistics & numerical data; Automobile Driving/*statistics & numerical data; Confidence Intervals; Cross-Sectional Studies; Humans; *Lighting; Netherlands; Odds Ratio; Risk Factors; Safety; *Visual Fields
Abstract This study estimates the safety effect of road lighting on accidents in darkness on Dutch roads, using data from an interactive database containing 763,000 injury accidents and 3.3 million property damage accidents covering the period 1987-2006. Two estimators of effect are used, and the results are combined by applying techniques of meta-analysis. Injury accidents are reduced by 50%. This effect is larger than the effects found in most of the earlier studies. The effect on fatal accidents is slightly larger than the effect on injury accidents. The effect during twilight is about 2/3 of the effect in darkness. The effect of road lighting is significantly smaller during adverse weather and road surface conditions than during fine conditions. The effects on pedestrian, bicycle and moped accidents are significantly larger than the effects on automobile and motorcycle accidents. The risk of injury accidents was found to increase in darkness. The average increase in risk was estimated to 17% on lit rural roads and 145% on unlit rural roads. The average increase in risk during rainy conditions is about 50% on lit rural roads and about 190% on unlit rural roads. The average increase in risk with respect to pedestrian accidents is about 140% on lit rural roads and about 360% on unlit rural roads.
Address Norwegian Public Roads Administration, Region South, Serviceboks 723, 4808 Arendal, Norway. per.wanvik@vegvesen.no
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0001-4575 ISBN Medium
Area Expedition Conference
Notes PMID:19114146 Approved no
Call Number IDA @ john @ Serial 250
Permanent link to this record