|   | 
Details
   web
Records
Author Fonken, L.K.; Finy, M.S.; Walton, J.C.; Weil, Z.M.; Workman, J.L.; Ross, J.; Nelson, R.J.
Title Influence of light at night on murine anxiety- and depressive-like responses Type Journal Article
Year 2009 Publication (up) Behavioural Brain Research Abbreviated Journal Behav Brain Res
Volume 205 Issue 2 Pages 349-354
Keywords Human Health; Animals; Anxiety/*physiopathology; Corticosterone/blood; Depression/*physiopathology; Dietary Sucrose/administration & dosage; Drinking Behavior/physiology; Light/*adverse effects; Lighting; Locomotion/physiology; Male; Maze Learning; Mice; Neuropsychological Tests; Organ Size; Photic Stimulation; *Photoperiod; Random Allocation; Swimming; Testis/pathology
Abstract Individuals are increasingly exposed to light at night. Exposure to constant light (LL) disrupts circadian rhythms of locomotor activity, body temperature, hormones, and the sleep-wake cycle in animals. Other behavioural responses to LL have been reported, but are inconsistent. The present experiment sought to determine whether LL produces changes in affective responses and whether behavioural changes are mediated by alterations in glucocorticoid concentrations. Relative to conspecifics maintained in a light/dark cycle (LD, 16:8 light/dark), male Swiss-Webster mice exposed to LL for three weeks increased depressive-like behavioural responses as evaluated by the forced swim test and sucrose anhedonia. Furthermore, providing a light escape tube reversed the effects of LL in the forced swim test. LL mice displayed reduced anxiety as evaluated by the open field and elevated-plus maze. Glucocorticoid concentrations were reduced in the LL group suggesting that the affective behavioural responses to LL are not the result of elevated corticosterone. Additionally, mice housed in LD with a clear tube displayed increased paired testes mass as compared to LL mice. Taken together, these data provide evidence that exposure to unnatural lighting can induce significant changes in affect, increasing depressive-like and decreasing anxiety-like responses.
Address Department of Psychology, The Ohio State University, Columbus, OH 43210, USA. Fonken.1@osu.edu
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0166-4328 ISBN Medium
Area Expedition Conference
Notes PMID:19591880 Approved no
Call Number LoNNe @ kagoburian @ Serial 749
Permanent link to this record
 

 
Author Haim, A.; Shanas, U.; Zubidad, A.E.S.; Scantelbury, M.
Title Seasonality and Seasons Out of Time--The Thermoregulatory Effects of Light Interference Type Journal Article
Year 2005 Publication (up) Chronobiology International Abbreviated Journal Chronobiol Int
Volume 22 Issue 1 Pages 59-66
Keywords *Photoperiod; Microtus socialis; voles; thermoregulation; biology; animals
Abstract The change in photoperiod is the main environmental cue for seasonal function of the reproductive, thermoregulatory, and immune systems in rodents existing outside of the tropics. In Israel, the social vole Microtus socialis breeds mainly under short photoperiod (SP) conditions. Previous studies showed that exposing voles to light interference (LI) in the field during the winter resulted in death. The aim of the current study was to determine the thermoregulatory response of SP-acclimated voles to LI. Therefore, heat production (VO2) at different ambient temperatures (Ta) and nonshivering thermogenesis (NST) were measured. Results show that LI of 15 min every 4h during the dark period significantly (p < 0.02) decreased VO2 at Ta = 15 degrees C and significantly (p < 0.05) decreased NST-capacity. These results can at least partly explain why LI-voles died during the winter under field conditions, through eliminating winter acclimatization of the thermoregulatory system, or what is considered as “seasons out of time.”
Address
Corporate Author Thesis
Publisher Place of Publication Editor
Language Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes Approved no
Call Number IDA @ john @ Serial 32
Permanent link to this record
 

 
Author Dumont, M.; Lanctot, V.; Cadieux-Viau, R.; Paquet, J.
Title Melatonin production and light exposure of rotating night workers Type Journal Article
Year 2012 Publication (up) Chronobiology International Abbreviated Journal Chronobiol Int
Volume 29 Issue 2 Pages 203-210
Keywords Adult; Animals; Circadian Rhythm/*physiology; Humans; *Light; Melatonin/*analogs & derivatives/*biosynthesis/urine; Neoplasms/etiology; *Photoperiod; Risk Factors; Sleep/physiology; *Work; Work Schedule Tolerance
Abstract Decreased melatonin production, due to acute suppression of pineal melatonin secretion by light exposure during night work, has been suggested to underlie higher cancer risks associated with prolonged experience of night work. However, the association between light exposure and melatonin production has never been measured in the field. In this study, 24-h melatonin production and ambulatory light exposure were assessed during both night-shift and day/evening-shift periods in 13 full-time rotating shiftworkers. Melatonin production was estimated with the excretion of urinary 6-sulfatoxymelatonin (aMT6s), and light exposure was measured with an ambulatory photometer. There was no difference in total 24-h aMT6s excretion between the two work periods. The night-shift period was characterized by a desynchrony between melatonin and sleep-wake rhythms, as shown by higher melatonin production during work and lower melatonin production during sleep when working night shifts than when working day/evening shifts. Light exposure during night work showed no correlation with aMT6s excreted during the night of work (p > .5), or with the difference in 24-h aMT6s excretion between the two work periods (p > .1). However, light exposure during night work was negatively correlated with total 24-h aMT6s excretion over the entire night-shift period (p < .01). In conclusion, there was no evidence of direct melatonin suppression during night work in this population. However, higher levels of light exposure during night work may have decreased total melatonin production, possibly by initiating re-entrainment and causing internal desynchrony. This interpretation is consistent with the proposition that circadian disruption, of which decreased melatonin production is only one of the adverse consequences, could be the mediator between night shiftwork and cancer risks.
Address Chronobiology Laboratory, Center for Advanced Research in Sleep Medicine, Sacre-Coeur Hospital of Montreal, Montreal, Quebec, Canada. marie.dumont@umontreal.ca
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:22324558 Approved no
Call Number IDA @ john @ Serial 138
Permanent link to this record
 

 
Author Arendt, J.
Title Biological rhythms during residence in polar regions Type Journal Article
Year 2012 Publication (up) Chronobiology International Abbreviated Journal Chronobiol Int
Volume 29 Issue 4 Pages 379-394
Keywords *Acclimatization; Activities of Daily Living; Affect; Antarctic Regions; Arctic Regions; *Biological Clocks; *Circadian Rhythm; *Cold Climate; *Cold Temperature; Energy Metabolism; Feeding Behavior; Humans; Melatonin/metabolism; Personnel Staffing and Scheduling; *Photoperiod; Seasonal Affective Disorder/physiopathology/prevention & control/psychology; *Seasons; Sleep; Sleep Disorders, Circadian Rhythm/etiology/physiopathology/*prevention & control/psychology; Time Factors; Workload; Workplace
Abstract At Arctic and Antarctic latitudes, personnel are deprived of natural sunlight in winter and have continuous daylight in summer: light of sufficient intensity and suitable spectral composition is the main factor that maintains the 24-h period of human circadian rhythms. Thus, the status of the circadian system is of interest. Moreover, the relatively controlled artificial light conditions in winter are conducive to experimentation with different types of light treatment. The hormone melatonin and/or its metabolite 6-sulfatoxymelatonin (aMT6s) provide probably the best index of circadian (and seasonal) timing. A frequent observation has been a delay of the circadian system in winter. A skeleton photoperiod (2 x 1-h, bright white light, morning and evening) can restore summer timing. A single 1-h pulse of light in the morning may be sufficient. A few people desynchronize from the 24-h day (free-run) and show their intrinsic circadian period, usually >24 h. With regard to general health in polar regions, intermittent reports describe abnormalities in various physiological processes from the point of view of daily and seasonal rhythms, but positive health outcomes are also published. True winter depression (SAD) appears to be rare, although subsyndromal SAD is reported. Probably of most concern are the numerous reports of sleep problems. These have prompted investigations of the underlying mechanisms and treatment interventions. A delay of the circadian system with “normal” working hours implies sleep is attempted at a suboptimal phase. Decrements in sleep efficiency, latency, duration, and quality are also seen in winter. Increasing the intensity of ambient light exposure throughout the day advanced circadian phase and was associated with benefits for sleep: blue-enriched light was slightly more effective than standard white light. Effects on performance remain to be fully investigated. At 75 degrees S, base personnel adapt the circadian system to night work within a week, in contrast to temperate zones where complete adaptation rarely occurs. A similar situation occurs on high-latitude North Sea oil installations, especially when working 18:00-06:00 h. Lack of conflicting light exposure (and “social obligations”) is the probable explanation. Many have problems returning to day work, showing circadian desynchrony. Timed light treatment again has helped to restore normal phase/sleep in a small number of people. Postprandial response to meals is compromised during periods of desynchrony with evidence of insulin resistance and elevated triglycerides, risk factors for heart disease. Only small numbers of subjects have been studied intensively in polar regions; however, these observations suggest that suboptimal light conditions are deleterious to health. They apply equally to people living in temperate zones with insufficient light exposure.
Address Centre for Chronobiology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK. arendtjo@gmail.com
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:22497433; PMCID:PMC3793275 Approved no
Call Number IDA @ john @ Serial 143
Permanent link to this record
 

 
Author Vollmer, C.; Michel, U.; Randler, C.
Title Outdoor light at night (LAN) is correlated with eveningness in adolescents Type Journal Article
Year 2012 Publication (up) Chronobiology International Abbreviated Journal Chronobiol Int
Volume 29 Issue 4 Pages 502-508
Keywords Adolescent; *Adolescent Behavior/drug effects; Biological Clocks; Central Nervous System Stimulants/administration & dosage; *Circadian Rhythm/drug effects; Computers; Cross-Sectional Studies; Female; Germany; Humans; *Light; Lighting; Male; *Photic Stimulation; *Photoperiod; Questionnaires; *Sleep/drug effects; Television; Time Factors; Video Games; *Wakefulness/drug effects
Abstract External zeitgebers synchronize the human circadian rhythm of sleep and wakefulness. Humans adapt their chronotype to the day-night cycle, the strongest external zeitgeber. The human circadian rhythm shifts to evening-type orientation when daylight is prolonged into the evening and night hours by artificial light sources. Data from a survey of 1507 German adolescents covering questions about chronotype and electronic screen media use combined with nocturnal satellite image data suggest a relationship between chronotype and artificial nocturnal light. Adolescents living in brightly illuminated urban districts had a stronger evening-type orientation than adolescents living in darker and more rural municipalities. This result persisted when controlling for time use of electronic screen media, intake of stimulants, type of school, age, puberty status, time of sunrise, sex, and population density. Time spent on electronic screen media use-a source of indoor light at night-is also correlated with eveningness, as well as intake of stimulants, age, and puberty status, and, to a lesser degree, type of school and time of sunrise. Adequate urban development design and parents limiting adolescents' electronic screen media use in the evening could help to adjust adolescents' zeitgeber to early school schedules when they provide appropriate lighting conditions for daytime and for nighttime.
Address Department of Biology, University of Education Heidelberg, Germany. vollmer@ph-heidelberg.de
Corporate Author Thesis
Publisher Place of Publication Editor
Language English Summary Language Original Title
Series Editor Series Title Abbreviated Series Title
Series Volume Series Issue Edition
ISSN 0742-0528 ISBN Medium
Area Expedition Conference
Notes PMID:22214237 Approved no
Call Number IDA @ john @ Serial 150
Permanent link to this record