toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author (up) Reddy, A.B.; O'Neill, J.S. url  doi
openurl 
  Title Healthy clocks, healthy body, healthy mind Type Journal Article
  Year 2010 Publication Trends in Cell Biology Abbreviated Journal Trends Cell Biol  
  Volume 20 Issue 1 Pages 36-44  
  Keywords Aging; Animals; Cell Cycle; *Circadian Rhythm; Humans; Neoplasms/genetics/metabolism; Signal Transduction  
  Abstract Circadian rhythms permeate mammalian biology. They are manifested in the temporal organisation of behavioural, physiological, cellular and neuronal processes. Whereas it has been shown recently that these approximately 24-hour cycles are intrinsic to the cell and persist in vitro, internal synchrony in mammals is largely governed by the hypothalamic suprachiasmatic nuclei that facilitate anticipation of, and adaptation to, the solar cycle. Our timekeeping mechanism is deeply embedded in cell function and is modelled as a network of transcriptional and/or post-translational feedback loops. Concurrent with this, we are beginning to understand how this ancient timekeeper interacts with myriad cell systems, including signal transduction cascades and the cell cycle, and thus impacts on disease. An exemplary area where this knowledge is rapidly expanding and contributing to novel therapies is cancer, where the Period genes have been identified as tumour suppressors. In more complex disorders, where aetiology remains controversial, interactions with the clockwork are only now starting to be appreciated.  
  Address Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge CB2 OQQ, UK. abr20@cam.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8924 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19926479; PMCID:PMC2808409 Approved no  
  Call Number IDA @ john @ Serial 133  
Permanent link to this record
 

 
Author (up) Rojas, L.M.; McNeil, R.; Cabana, T.; Lachapelle, P. url  doi
openurl 
  Title Diurnal and Nocturnal Visual Capabilities in Shorebirds as a Function of Their Feeding Strategies Type Journal Article
  Year 1999 Publication Brain, Behavior and Evolution Abbreviated Journal Brain Behav Evol  
  Volume 53 Issue 1 Pages 29-43  
  Keywords foraging; Catoptrophorus semipalmatus; Territorial Willets; Black-winged Stilt; Himantopus himantopus; Scolopax minor; Limnodromus griseus; birds; Wilson's Plover; Charadrius wilsonia; Short-billed Dowitcher; Limnodromus griseus  
  Abstract Some shorebird species forage with the same feeding strategy at night and during daytime, e.g. visual pecking in the Wilson's Plover (Charadrius wilsonia) or tactile probing in the Short-billed Dowitcher (Limnodromus griseus). The Limnodromus griseus (Scolopax minor) uses tactile probing, by day and by night, but sometimes pecks for insects during daytime. The Black-winged Stilt (Himantopus himantopus) is a visual pecker, both by day and by night, and sometimes forages tactilely on windy (agitated water surface) moonless nights. Territorial Willets (Catoptrophorus semipalmatus) are visual peckers during daylight and on moonlight conditions but switch to tactile feeding under lower light conditions. It could be postulated that some shorebird species would switch from visual feeding during daytime to tactile foraging at night because they have poor night vision compared to species that are always sight foragers irrespective of the time of the day. This issue was examined by comparing retinal structure and function in the above species. Electroretinograms (ERGs) were obtained at different light intensities from anesthetized birds, and the retinae were processed for histological observations. Based on ERGs, retinal sensitivity, and rod:cone ratios, both plovers and stilts are well adapted for nocturnal vision. Although they have low rod density compared to that of stilts and plovers, Willets and woodcocks have a scotopic retinal sensitivity similar to that of stilts and plovers but rank midway between plovers and dowitchers for the b-wave amplitude. Dowitchers have the lowest scotopic b-wave amplitude and retinal sensitivity and appear the least well adapted for night vision. Based on photopic ERGs and cone densities, although stilts, Willets and dowitchers appear as well adapted for daytime vision, plovers occupy the last rank of all species examined. Compared to the nighttime tactile feeders and those that switch from daytime visual pecking to tactile feeding at night, nighttime sight feeders have a superior rod function and, consequently, potentially superior nocturnal visual capabilities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0006-8977 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 47  
Permanent link to this record
 

 
Author (up) Saldaña-Vázquez, R.A.; Munguía-Rosas, M.A. url  doi
openurl 
  Title Lunar phobia in bats and its ecological correlates: A meta-analysis Type Journal Article
  Year 2013 Publication Mammalian Biology – Zeitschrift für Säugetierkunde Abbreviated Journal Mammalian Biology – Zeitschrift für Säugetierkunde  
  Volume 78 Issue 3 Pages 216-219  
  Keywords Chiroptera; Foraging activity; Foraging habitat; Latitude; Moonlight; mammals; bats; animals  
  Abstract Animals show several behavioral strategies to reduce predation risks. Presumably, moonlight avoidance is a strategy used by some nocturnal species to reduce the risk of predation. In bats, some research indicates that foraging activity is negatively correlated with moonlight intensity, a phenomenon better known as lunar phobia. However, the currently available evidence is contradictory because some bat species reduce their activity during nights with more moonlight while the opposite occurs in other species. We quantitatively evaluated the strength and direction of the relationship between moonlight intensity and bat activity using a meta-analysis. We also looked at some ecological correlates of lunar phobia in bats. Specifically, we examined foraging habitat and latitude as potential moderators of the size of the lunar phobia effect. Our results show that, regardless of the method used to evaluate bat activity, the overall relationship between moonlight intensity and bat activity is significant and negative (r = −0.22). Species foraging on the surface of the water (piscivores and insectivores; r = −0.83) and forest canopy species (i.e., big frugivores; r = −0.30) are more affected by moonlight than those with different foraging habitats (understory, subcanopy, open air). Latitude was positively correlated with lunar phobia (r = 0.023). The stronger lunar phobia for bats foraging on the water surface and in the forest canopy may suggest that the risk of predation is greater where moonlight penetrates more easily. The significant effect of latitude as a moderator of lunar phobia suggests that there is a weak geographic pattern, with this phobia slightly more common in tropical bats than in temperate species.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1616-5047 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 97  
Permanent link to this record
 

 
Author (up) Shapira, I.; Walker, E.; Brunton, D.H.; Raubenheimer, D. url  openurl
  Title Responses to direct versus indirect cues of predation and competition in naϊve invasive mice: implications for management Type Journal Article
  Year 2013 Publication New Zealand Journal of Ecology Abbreviated Journal NZ J. of Ecol.  
  Volume 37 Issue 1 Pages 33-40  
  Keywords Animals; Mus musculus; mice; New Zealand; foraging; moonlight; giving-up density; GUD; moon phase  
  Abstract Many populations of invasive mice Mus musculus in New Zealand have experienced the removal of mammalian predators and competitors, with the consequence of mouse population irruptions. The effects of these removals on mouse foraging are largely unknown, yet this information is essential for developing and implementing better mouse control. We investigated the effects of direct and indirect predatory cues on foraging of free-ranging mice at a site where mammalian predators were eradicated 5 years previously. We used 17 stations, each containing four trays of millet seeds mixed thoroughly in sand, with three unfamiliar mammalian (a predator, a competitor, and a herbivore) odour treatments and a control (water), during the four phases of the moon. We measured mouse selectivity for treatment/control trays, giving-up densities (GUDs, a measure of food consumption), and tray encounter rates. Foraging by mice was not affected by odour cues from any of the unfamiliar mammals. Moonlight intensity, however, affected mouse foraging, with higher GUDs being recorded on brighter moon phases (full and waxing > new and waning) during the first night of the trials. This effect was less pronounced during the second night. Resource encounter rates were also affected, with the proportion of trays foraged lower during the brighter phases of the moon on both the first and second nights. We suggest that coordinating management efforts according to the phases of the moon has the potential to improve mouse control and reduce bait wastage.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 01106465 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 1364  
Permanent link to this record
 

 
Author (up) Shen, J.; Tower, J. url  doi
openurl 
  Title Effects of light on aging and longevity Type Journal Article
  Year 2019 Publication Ageing Research Reviews Abbreviated Journal Ageing Res Rev  
  Volume 53 Issue Pages 100913  
  Keywords Human Health; Review; Aging; longevity  
  Abstract Increasing evidence suggests an important role for light in regulation of aging and longevity. UV radiation is a mutagen that can promote aging and decrease longevity. In contrast, NIR light has shown protective effects in animal disease models. In invertebrates, visible light can shorten or extend lifespan, depending on the intensity and wavelength composition. Visible light also impacts human health, including retina function, sleep, cancer and psychiatric disorders. Possible mechanisms of visible light include: controlling circadian rhythms, inducing oxidative stress, and acting through the retina to affect neuronal circuits and systems. Changes in artificial lighting (e.g., LEDs) may have implications for human health. It will be important to further explore the mechanisms of how light affects aging and longevity, and how light affects human health.  
  Address Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles CA 90089-2910, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1568-1637 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31154014 Approved no  
  Call Number GFZ @ kyba @ Serial 2514  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: