toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Records Links
Author Jetz, W.; Steffen, J.; Linsenmair, K.E. url  doi
openurl 
  Title (up) Effects of light and prey availability on nocturnal, lunar and seasonal activity of tropical nightjars Type Journal Article
  Year 2003 Publication Oikos Abbreviated Journal Oikos  
  Volume 103 Issue 3 Pages 627-639  
  Keywords foraging; Caprimulgus climacurus; birds; nightjars; standard-winged nightjar; Macrodipteryx longipennis; long-tailed nightjar  
  Abstract Nightjars and their allies represent the only major group of visually hunting aerial insectivores with a crepuscular and/or nocturnal lifestyle. Our purpose was to examine how both light regime and prey abundance in the tropics, where periods of twilight are extremely short, but nightjar diversity is high, affect activity across different temporal scales. We studied two nightjar species in West African bush savannah, standard-winged nightjars Macrodipteryx longipennis Shaw and long-tailed nightjars Caprimulgus climacurus Vieillot. We measured biomass of potential prey available using a vehicle mounted trap and found that it was highest at dusk and significantly lower at dawn and during the night. Based on direct observations, both nightjars exhibit the most intense foraging behaviour at dusk, less intense foraging at dawn and least at night, as predicted by both prey abundance and conditions for visual prey detection. Nocturnal foraging was positively correlated with lunar light levels and ceased below about 0.03 mW m−2. Over the course of a lunar cycle, nocturnal light availability varied markedly, while prey abundance remained constant at dusk and at night was slightly higher at full moon. Both species increased twilight foraging activity during new moon periods, compensating for the shorter nocturnal foraging window at that time. Seasonally, the pattern of nocturnal light availability was similar throughout the year, while prey availability peaked shortly after onset of the wet season and then slowly decreased over the following four months. The courtship and breeding phenology of both species was timed to coincide with the peak in aerial insect abundance, suggesting that prey availability rather than direct abiotic factors act as constraints, at least at the seasonal level. Our findings illustrate the peculiar constraints on visually orienting aerial nocturnal insectivores in general and tropical nightjars in particular and highlight the resulting nocturnal, lunar and seasonal allocation of activities.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0030-1299 ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number IDA @ john @ Serial 48  
Permanent link to this record
 

 
Author Shen, J.; Tower, J. url  doi
openurl 
  Title (up) Effects of light on aging and longevity Type Journal Article
  Year 2019 Publication Ageing Research Reviews Abbreviated Journal Ageing Res Rev  
  Volume 53 Issue Pages 100913  
  Keywords Human Health; Review; Aging; longevity  
  Abstract Increasing evidence suggests an important role for light in regulation of aging and longevity. UV radiation is a mutagen that can promote aging and decrease longevity. In contrast, NIR light has shown protective effects in animal disease models. In invertebrates, visible light can shorten or extend lifespan, depending on the intensity and wavelength composition. Visible light also impacts human health, including retina function, sleep, cancer and psychiatric disorders. Possible mechanisms of visible light include: controlling circadian rhythms, inducing oxidative stress, and acting through the retina to affect neuronal circuits and systems. Changes in artificial lighting (e.g., LEDs) may have implications for human health. It will be important to further explore the mechanisms of how light affects aging and longevity, and how light affects human health.  
  Address Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles CA 90089-2910, United States  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1568-1637 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:31154014 Approved no  
  Call Number GFZ @ kyba @ Serial 2514  
Permanent link to this record
 

 
Author Kuijper, D.P.J.; Schut, J.; van Dullemen, D.; Toorman, H.; Goossens, N.; Ouwehand, J.; Limpens, H.J.G.A. url  openurl
  Title (up) Experimental evidence of light disturbance along the commuting routes of pond bats (Myotis dasycneme) Type Journal Article
  Year 2008 Publication Lutra Abbreviated Journal  
  Volume 51 Issue 1 Pages 37-49  
  Keywords Animals; ecological connectivity; conservation; illumination; foraging; turning behaviour  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes Approved no  
  Call Number LoNNe @ christopher.kyba @ Serial 404  
Permanent link to this record
 

 
Author Haag, C.R.; Riek, M.; Hottinger, J.W.; Pajunen, V.I.; Ebert, D. url  doi
openurl 
  Title (up) Genetic diversity and genetic differentiation in Daphnia metapopulations with subpopulations of known age Type Journal Article
  Year 2005 Publication Genetics Abbreviated Journal Genetics  
  Volume 170 Issue 4 Pages 1809-1820  
  Keywords Plants; Aging; Animals; Daphnia/*genetics/*physiology; *Genetic Variation; *Genetics, Population  
  Abstract If colonization of empty habitat patches causes genetic bottlenecks, freshly founded, young populations should be genetically less diverse than older ones that may have experienced successive rounds of immigration. This can be studied in metapopulations with subpopulations of known age. We studied allozyme variation in metapopulations of two species of water fleas (Daphnia) in the skerry archipelago of southern Finland. These populations have been monitored since 1982. Screening 49 populations of D. longispina and 77 populations of D. magna, separated by distances of 1.5-2180 m, we found that local genetic diversity increased with population age whereas pairwise differentiation among pools decreased with population age. These patterns persisted even after controlling for several potentially confounding ecological variables, indicating that extinction and recolonization dynamics decrease local genetic diversity and increase genetic differentiation in these metapopulations by causing genetic bottlenecks during colonization. We suggest that the effect of these bottlenecks may be twofold, namely decreasing genetic diversity by random sampling and leading to population-wide inbreeding. Subsequent immigration then may not only introduce new genetic material, but also lead to the production of noninbred hybrids, selection for which may cause immigrant alleles to increase in frequency, thus leading to increased genetic diversity in older populations.  
  Address Unite d'Ecologie et d'Evolution, Departement de Biologie, Universite de Fribourg, CH-1700 Fribourg, Switzerland. christoph.haag@ed.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0016-6731 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:15937138; PMCID:PMC1449778 Approved no  
  Call Number LoNNe @ kagoburian @ Serial 660  
Permanent link to this record
 

 
Author Reddy, A.B.; O'Neill, J.S. url  doi
openurl 
  Title (up) Healthy clocks, healthy body, healthy mind Type Journal Article
  Year 2010 Publication Trends in Cell Biology Abbreviated Journal Trends Cell Biol  
  Volume 20 Issue 1 Pages 36-44  
  Keywords Aging; Animals; Cell Cycle; *Circadian Rhythm; Humans; Neoplasms/genetics/metabolism; Signal Transduction  
  Abstract Circadian rhythms permeate mammalian biology. They are manifested in the temporal organisation of behavioural, physiological, cellular and neuronal processes. Whereas it has been shown recently that these approximately 24-hour cycles are intrinsic to the cell and persist in vitro, internal synchrony in mammals is largely governed by the hypothalamic suprachiasmatic nuclei that facilitate anticipation of, and adaptation to, the solar cycle. Our timekeeping mechanism is deeply embedded in cell function and is modelled as a network of transcriptional and/or post-translational feedback loops. Concurrent with this, we are beginning to understand how this ancient timekeeper interacts with myriad cell systems, including signal transduction cascades and the cell cycle, and thus impacts on disease. An exemplary area where this knowledge is rapidly expanding and contributing to novel therapies is cancer, where the Period genes have been identified as tumour suppressors. In more complex disorders, where aetiology remains controversial, interactions with the clockwork are only now starting to be appreciated.  
  Address Department of Clinical Neurosciences, University of Cambridge Metabolic Research Laboratories, Institute of Metabolic Science, Cambridge CB2 OQQ, UK. abr20@cam.ac.uk  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language English Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0962-8924 ISBN Medium  
  Area Expedition Conference  
  Notes PMID:19926479; PMCID:PMC2808409 Approved no  
  Call Number IDA @ john @ Serial 133  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: